Probability- Hints and Tips

1. Probability of Events:

1.1 Probability of one event:

- Probability of event $\mathrm{E}, \mathrm{P}(\mathrm{E})=\frac{\text { Number of outcomes satisfying } E}{\text { Total number of outcomes }}$
- $0 \leq P(E) \leq 1$, meaning that probabilities cannot be negative or greater than 1 .
- $P(E)=0$ means that event E can't happen.
- $P(E)=1$ means event E is certain to happen.
- $P\left(E^{\prime}\right)$ is the probability that E does not happen.

1.2 Probability of multiple events:

- $P(A \cap B)$ is the probability that events A and B happen at the same time.
- $P\left(A^{\prime} \cap B\right)$ is the probability that B happens but A does not happen at the same time
- $\quad P(A$ or $B)=P(A)+P(B)-P(A \cap B)$.

1.3 Conditional Probability:

- $\quad P(A \mid B)$ is the probability that A happens given that B has happened.

1.4 Independent Events:

- Two events, A and B, are independent if the occurrence of one event does not affect the occurrence of the other e.g. flipping a coin and getting tails (A) and rolling a six-sided die and getting a 2 (B).
- For independent events, $P(A \cap B)=P(A)$ * $P(B)$.
- Similarly for independent events:

```
- \(\quad P(A \mid B)=P(A \cap B) / P(B)=P(A) * P(B) / P(B)=P(A)\)
- \(P(A \cap B)=P(A) * P(B \mid A)=P(A) * P(B)\)
- \(P(A \cap B)=P(B) * P(A \mid B)=P(B) * P(A)\)
```


1.5 Expected Value:

- The expected value of a random variable is the sum of all the values that the random variable can take multiplied by the probability of the random variable being equal to that value.
- It is another word for the average value of the random variable.
- Formula is given by: $E(X)=\Sigma x^{*} P(X=x)$

2. Combinations and Permutations

- Permutations: The number of ways to arrange r objects from a set of n distinct objects. $P(n, r)=\frac{n!}{(n-r)!}$. Whenever the question mentions arrangements, think of permutations.
- Combinations: The number of ways to choose r objects from a set of n distinct objects, regardless of the order. $C(n, r)=\frac{n!}{r!(n-r)!}$. Whenever the question mentions choosing or choices, think of combinations.
- You need to be able to use your calculator to calculate different forms of permutations and combinations.
- To do this, first select the number n on your calculator, followed by the nCr button followed by the number r.

Probability- Hints and Tips

- E.g. There are 11 students, how many choices of 5 a side teams can be made from those 11 students.
- In this question, the order does not matter, and we are looking for number of choices, so we are dealing with combinations.
- To calculate the number of combinations, we use our calculator and input 11, $\mathrm{nCr}, 5$ and get an answer of 462.

3. Bernoulli Trials

3.1 Bernoulli Trials

- A Bernoulli trial is one that only has two outcomes, success or failure.
- The trials are independent.
- Probability of success is p.
- Probability of failure is (1-p).

3.2 Probability of k success in n Bernoulli Trials

- The formula for calculating the probability of r success in n events is given by the formula on page 33 of the log tables:

Dáiltí dóchúlachta	Probability distributions	
an dáileadh déthéarmach	$P(X=r)=\binom{n}{r} p^{r} q^{n-r}$	binomial distribution
$r=0 \ldots n$		

- E.g. A fair die is thrown 5 times. Calculate the probability of getting 3 fours to 3 decimal places.
- Probability of getting a four $=\frac{1}{6}$
- Probability of not getting a four $=\frac{5}{6}$
- Probability of 3 fours $={ }_{5} \mathrm{C}_{3} *\left(\frac{1}{6}\right)^{3} *\left(\frac{5}{6}\right)^{2}=0.032$

3.3 Probability that the kth success occurs on the nth Bernoulli Trial

- In order for the kth success to happen on the nth trial, that means there must have been (k1) success in ($n-1$) trials followed by a success on the nth trial.
- The formula is given by ${ }_{(n-1)} C_{(k-1)} * p^{k} *(1-p)^{(n-k)}$.
- E.g. A card is randomly selected from a deck of cards and then placed back. Calculate the probability that the $3^{\text {rd }}$ diamond is selected on the $10^{\text {th }}$ card.
- First calculate the probability of selecting 2 diamonds from the first 9 cards
- ${ }_{9} \mathrm{C}_{2} *\left(\frac{1}{4}\right)^{2} *\left(\frac{3}{4}\right)^{7}=0.3$
- Then multiply this by the probability of getting another diamond.
$0=0.3 * 0.25=0.075$.

