Calculus 2-Hints and Tips

2. Integration

2.1 Definition

- Integration is the reverse process of differentiation.
- The integral of a function between two points gives the area under the curve and above the x-axis, between those two points.

2.2 Notation

- If $\mathrm{y}=\mathrm{f}(\mathrm{x})$, the integral is denoted as $\int f(x) d x$

2.3 Rules of Integration

2.3.1 Power Rule

- If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}$ then $\int f(x) d x=\frac{x^{(n+1)}}{n+1}+\mathrm{C}$ where C is constant of integration. (Increase the power by 1 and divide by the power plus 1).
- The only exception to the above rule is $n=-1$ i.e. x^{-1}. The integral of $f(x)=x^{-1}$ is $\ln (x)$ (Opposite of differentiation).
- E.g. If $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{3}$ then $\int f(x)=\frac{3 x^{4}}{4}+\mathrm{C}$

2.3.2 Sum/Difference Rule

- $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
- Similarly $\int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x$
- You can either combine similar terms together first and then integrate or integrate each function separately and then combine.
- E.g. $f(x)=5-3 x^{2}$ and $g(x)=6 x^{2}-2 x$ and we want to find $\int(f(x)-g(x)) d x$
- Method 1 - Combine similar terms and then integrate. $f(x)-g(x)=\left(5-3 x^{2}\right)-\left(6 x^{2}-\right.$ $2 x)=5-9 x^{2}+2 x$
- $\int 5-9 x^{2}+2 x d x=5 x-3 x^{3}+x^{2}$
- Method 2 - Integrate and then combine similar terms.
- $\int f(x) d x=\int 5-3 x^{2} d x=5 x-x^{3}$
- $\int g(x) d x=\int 6 x^{2}-2 x d x=2 x^{3}-x^{2}$
- $\int f(x) d x-\int g(x) d x=5 \mathrm{x}-\mathrm{x}^{3}-\left(2 \mathrm{x}^{3}-\mathrm{x}^{2}\right)=5 \mathrm{x}-3 \mathrm{x}^{3}+\mathrm{x}^{2}$
2.4 Common Integrals of Functions (Page 26 of log tables)

Function	Integral
$\frac{1}{x}$	$\operatorname{Ln}(\mathrm{x})$
e^{x}	e^{x}
e^{ax}	$\frac{1}{a} \mathrm{e}^{\mathrm{ax}}$
$\operatorname{Sin}(\mathrm{x})$	$-\operatorname{Cos}(\mathrm{x})$
$\operatorname{Cos}(\mathrm{x})$	$\operatorname{Sin}(\mathrm{x})$
$\operatorname{Tan}(\mathrm{x})$	$\operatorname{Ln}\|\sec (\mathrm{x})\|$

Calculus 2- Hints and Tips

2.5 Area under a Curve

2.5.1 Trapezoidal Rule

- The Trapezoidal Rule is used to estimate the area under a curve.
- The formula is on page 12 of log tables: $\mathrm{A} \approx \frac{h}{2}\left[y_{1}+y_{n}+2\left(y_{2}+y_{3}+\cdots y_{n-1}\right)\right]$

- h is the difference between consecutive x values.

2.5.2 Integrate Function over Interval

- The Trapezoidal rule is just used to estimate the area under a curve.
- To calculate the actual area under a curve between an interval $[a, b]$ we:
i. Integrate the function and ignore the constant C .
ii. Calculate the integral at the upper interval (b) and subtract the integral at the lower interval (a).
- E.g. Calculate the area under the curve $f(x)=3 x^{2}$ between $(2,5)$.
- Integrate the function: $\int_{2}^{5} f(x) d x==\frac{3 x^{3}}{3}=x^{3}$.
- Apply the limits of integration: $\left.x^{3}\right|_{2} ^{5}=(5)^{3}-(2)^{3}=125-8=117$ units squared is the area.

2.6 Average Value of Function over Interval

- The average value of a function f over the interval $[a, b]$ is given by the formula:
$\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
- This formula is not in your log tables so you need to learn it.
- The question may ask for average value of a function or average height of a function over an interval. Both forms mean the same.
- E.g. Calculate average height of the function $f(x)=3 x^{2}$ over the interval $(2,5)$.
- From 2.5.2 $\int_{2}^{5} 3 x^{2} d x=117$.
- Average value over $[2,5]=\frac{1}{5-2} * 117=39$.

