Calculus 1 Tutorial Questions

1) Find the derivatives of:
i. $\quad x^{4}$
ii. $7 x^{3}$
iii. x^{-1}
iv. x^{1}
2) Find the derivative of:
i. $\quad f(x)=5 x^{2}+7 x+3$
ii. $\quad g(x)=2 x^{3}+4 x^{2}+x+5$
iii. $\quad y=8 x+4$
3) Find the slope of line $y=8 x+4$ using differentiation
4) Product rule: $y=\left(4+3 x^{2}\right)\left(6 x+4 x^{2}\right)$ Find $\frac{d y}{d x}$
5) Quotient rule: $y=\frac{(5+6 x)}{2 x^{2}}$. Find $\frac{d y}{d x}$
6) Chain rule: $y=(2+3 x)^{4}$. Find $\frac{d y}{d x}$
7) Chain rule: $y=\operatorname{Cos}(3 x+5)$. Find $\frac{d y}{d x}$
8) Find the following limits:
i. $\quad \lim _{x \rightarrow 1}\left(\frac{x^{2}+x-2}{x-1}\right)$
ii. $\quad \lim _{n \rightarrow \infty}\left(\frac{2 n^{2}-3 n+2}{6 n^{2}+5 n-6}\right)$
9) Find the derivative of $f(x)=5-2 x$ by first principles.

10) 2014 Paper 1 Q4

(a) Differentiate the function $2 x^{2}-3 x-6$ with respect to x from first principles.
(b) Let $\mathrm{f}(\mathrm{x})=\frac{2 x}{x+2}, x \neq-2, x \in \mathbb{R}$. Find the co-ordinates of the points at which the slope of the tangent to the curve $y=f(x)$ is $\frac{1}{4}$.

11) 2016 Paper 1 Q6

(a) Differentiate the function $(2 x+4)^{2}$ from first principles, with respect to x .
(b) (i) If $y=x \sin \left(\frac{1}{x}\right)$, find $\frac{d y}{d x}$
(ii) find the slope of the tangent to the curve $\mathrm{y}=\mathrm{x} \sin \left(\frac{1}{x}\right)$, when $\mathrm{x}=\frac{4}{\pi}$. Give your answer correct to two decimal places.

12) 2017 Paper 1 Q3

(b) $f(x)=\ln \left(3 x^{2}+2\right)$ and $g(x)=x+5$, where $x \in \mathbb{R}$. Find the value of the derivative of $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ at $\mathrm{x}=\frac{1}{4}$. Give your answer correct to 3 decimal places.

13) 2021 Paper 1 Q8

(a) $\mathrm{h}(\mathrm{x})=0.001 \mathrm{x}^{3}-0.12 \mathrm{x}^{2}+\mathrm{px}+5$ in the domain $0 \leq x \leq 75$
(i) Use $\mathrm{h}(10)=30$ to show that $\mathrm{p}=36$
(ii) Complete the table below and hence draw the graph of $\mathrm{h}(\mathrm{x})$ in the domain $0 \leq x \leq 75$ on the grid below.

Society of Actuaries in Ireland

Calculus 1 Tutorial Questions

x	0	10	20	30	40	50	60	70	75
$h(x)$		30			21		5		21.875

(b) The function $\mathrm{h}(\mathrm{x})$ can be used to model the height above level ground (in metres) of a section of the path followed by a rollercoaster track, where x is the horizontal distance from a fixed point.
(i) Find $\mathrm{h}^{\prime}(\mathrm{x})$, the derivative of $\mathrm{h}(\mathrm{x})$.
(ii) Show that this section of the track reaches its maximum height above level ground when $x=20$.
(iii) Find using calculus, the height above ground in metres, at the instant the track passes through an inflection point.

