Calculus- Hints and Tips

1. Differentiation

1.1 Definition

- Calculus is the study of change.
- The derivative of a function measures how the function changes as its input changes

1.2 Notation

- If $y=f(x)$, the derivative is denoted as $f^{\prime}(x)$ or $\frac{d y}{d x}$
- It means how much $f(x)$ changes as x changes.

1.3 Rules of Differentiation

1.3.1 Power Rule

- If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{(n-1)}$. (Bring down the power and reduce the power by 1).
- The derivative of a linear function is the slope of that line.
- The derivative of a quadratic function is the slope of the tangent line to the graph of that function at that point.
- E.g. If $f(x)=3 x^{3}$ then $f^{\prime}(x)=3^{*} 3 x^{(3-1)}=9 x^{2}$

1.3.2 Sum/Difference Rule

- If $f(x)=g(x)+h(x)$, then $f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)$
- Similarly if $f(x)=g(x)-h(x)$ then $f^{\prime}(x)=g^{\prime}(x)-h^{\prime}(x)$
- E.g. If $g(x)=3 x^{4}+5 x^{2}$ and $h(x)=4 x^{2}+6 x+5$, and $f(x)=g(x)+h(x)$ then
- $g^{\prime}(x)=4^{*} 3 x^{(4-1)}+2^{*} 5 x^{(2-1)}->g^{\prime}(x)=12 x^{3}+10 x$
- $h^{\prime}(x)=2 * 4 x^{(2-1)}+1^{*} 6 x^{(1-1)}+0$ (Constants go to 0$)->h^{\prime}(x)=8 x+6$
- $f^{\prime}(x)=12 x^{3}+10 x+8 x+6->f^{\prime}(x)=12 x^{3}+18 x+6$

1.3.3 Product Rule (Page 25 of log tables)

- This rule is used when you have two functions being multiplied.
- If $\mathrm{y}=\mathrm{uv}$ then $\frac{d y}{d x}=u * \frac{d v}{d x}+v \frac{d u}{d x}$
- E.g. If $y=\left(3 x^{4}+5 x^{2}\right)^{*}\left(4 x^{2}+6 x+5\right)$ then $u=3 x^{4}+5 x^{2}$ and $v=4 x^{2}+6 x+5$
- $\frac{d u}{d x}=4^{*} 3 \mathrm{x}^{(4-1)}+2^{*} 5 \mathrm{x}^{(2-1)}->\frac{d u}{d x}=12 \mathrm{x}^{3}+10 \mathrm{x}$
- $\frac{d v}{d x}=2 * 4 \mathrm{x}^{(2-1)}+1 * 6 \mathrm{x}^{(1-1)}+0$ (Constants go to 0$) \rightarrow \frac{d v}{d x}=8 \mathrm{x}+6$
- $\frac{d y}{d x}=\left(12 x^{3}+10 x\right)^{*}\left(4 x^{2}+6 x+5\right)+\left(3 x^{4}+5 x^{2}\right)^{*}(8 x+6)$ (Subbing into the formula)
- Multiplying out the brackets and combining terms gives:
- $\frac{d y}{d x}=72 x^{5}+90 x^{4}+140 x^{3}+90 x^{2}+50 \mathrm{x}$

1.3.3 Quotient Rule (Page 25 of log tables)

- This rule is used when you have a function being divided by a function.
- If $\mathrm{y}=\frac{u}{v^{\prime}}$, then $\frac{d y}{d x}=\frac{(v * d u)-(u * d v)}{v^{2}}$
- E.g. If $y=\frac{3 x^{2}+5 x}{2 x+6}$ then $u=3 x^{2}+5 x$ and $v=2 x+6$:

Calculus- Hints and Tips

- $\frac{d u}{d x}=2 * 3 x^{(2-1)}+1 * 5 x^{(1-1)}->\frac{d u}{d x}=6 x+5$
- $\frac{d v}{d x}=1 * 2 \mathrm{x}^{(1-1)}+0$ (Constants go to 0$)->\frac{d v}{d x}=2$
- $\frac{d y}{d x}=\frac{(6 x+5) *(2 x+6)-\left(3 x^{2}+5 \mathrm{x}\right) * 2}{(2 x+6)^{2}}$ (Subbing into formula)
- Multiplying out the brackets and combining terms gives:
- $\frac{d y}{d x}=\frac{6 x^{2}+36 x+30}{(2 x+6)^{2}}$

1.3.4 Chain Rule (Page 25 of log tables)

- This rule is used when you have a function within a function.
- If $\mathrm{f}(\mathrm{x})=\mathrm{u}(\mathrm{v}(\mathrm{x}))$ then $\mathrm{f}^{\prime}(\mathrm{x})=\frac{d u}{d v} * \frac{d v}{d x}$
- E.g. If $f(x)=\left(5 x^{2}+7\right)^{3}$, then $u=v^{3}$ and $v=5 x^{2}+7$,
- $\frac{d u}{d v}=3^{*} v^{(3-1)}=3 v^{2}$
- $\frac{d v}{d x}=2 * 5 \mathrm{x}^{(2-1)}+0=10 \mathrm{x}$
- $f^{\prime}(x)=3 v^{2} * 10 x$ (Subbing into formula)
- $f^{\prime}(x)=3\left(5 x^{2}+7\right) * 10 x$ (Subbing back in value for v)
- $f^{\prime}(x)=30 x\left(5 x^{2}+7\right)$
1.4 Common Derivatives of Functions (Page 25 of log tables)

Function	Derivative
$\operatorname{Ln}(\mathrm{x})$	$\frac{1}{x}$
e^{x}	e^{x}
e^{ax}	$\mathrm{ae}^{\mathrm{ax}}$
$\operatorname{Cos}(\mathrm{x})$	$-\operatorname{Sin}(\mathrm{x})$
$\operatorname{Sin}(\mathrm{x})$	$\operatorname{Cos}(\mathrm{x})$
$\operatorname{Tan}(\mathrm{x})$	$\operatorname{Sec}^{2}(\mathrm{x})$
$\operatorname{Sin}^{-1}\left(\frac{x}{a}\right)$	$\frac{1}{\sqrt{a^{2}-x^{2}}}$
$\cos ^{-1}\left(\frac{x}{a}\right)$	$\frac{-1}{\sqrt{a^{2}-x^{2}}}$
$\tan ^{-1}\left(\frac{x}{a}\right)$	$\frac{a}{a^{2}+x^{2}}$

1.5 Differentiation by First Principles

- This is a formula to learn off as it is not in the log tables.
- Given $\mathrm{f}(\mathrm{x})$ the derivative is $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- E.g. If $f(x)=3 x^{2}+5$:
- $f(x+h)=3(x+h)^{2}+5$. (Sub in $x+h$ for every x).
- Multiplying out the brackets gives $3 x^{2}+6 x h+3 h^{2}+5$
- Simplify the numerator: $f(x+h)-f(x)$:
- $\left(3 x^{2}+6 x h+3 h^{2}+5\right)-\left(3 x^{2}+5\right)=6 x h+3 h^{2}$

Society of Actuaries in Ireland

Calculus- Hints and Tips

- Divide by h: $\frac{6 x h+3 h^{2}}{h}=6 x+3 h$
- Take the limit as h goes to $0: 6 x+3(0)$ (Sub in 0 for h)
- The final answer is $6 x$.
- You need to be able to apply this method to linear and quadratic functions.

1.6 Minimum, Maximum and Inflection Points

- The value of x for which $f^{\prime}(x)=0$, identifies either a maximum or a minimum point on a curve (i.e. the slope of the tangent to the curve at that point is 0)
- In order to determine if it's a maximum or a minimum, we look at the second derivative.
- If $f^{\prime \prime}(x)>0->$ Minimum turning point.
- If $f^{\prime \prime}(x)<0->$ Maximum turning point.
- If $f^{\prime \prime}(x)=0->$ Point of inflection. Point of inflection is the point where the slope is increasing/decreasing the most.
- E.g. If $f(x)=x^{3}-4 x^{2}-3 x+5$, differentiate the equation, set equal to 0 and solve the quadratic equation for x :
- $f^{\prime}(x)=3 x^{2}-8 x-3$
- $3 x^{2}-8 x-3=0$. Solving for X gives $x=3$ and $x=\frac{-1}{3}$
- Sub back in the values to the original equation to find the y coordinate:
- For $x=3, f(3)=3^{3}-4(3)^{2}-3(3)+5=-13$.
- $\quad=>(3,-13)$ is a turning point
- For $\mathrm{x}=\frac{-1}{3}, \mathrm{f}\left(\frac{-1}{3}\right)=\left(\frac{-1}{3}\right)^{3}-4\left(\frac{-1}{3}\right)^{2}-3\left(\frac{-1}{3}\right)+5=\left(\frac{149}{27}\right)$
- $\quad=>\left(\frac{-1}{3}, \frac{149}{27}\right)$ is a turning point
- To find which point if minimum and maximum, calculate the second derivative and sub in the value for x and determine if the result is $<0(\max)$ or $>0(\min)$.
- $f^{\prime \prime}(x)=6 x-8$ (differentiating $3 x^{2}-8 x-3$).
- For $x=3, f^{\prime \prime}(3)=6(3)-8=18-8=10$. This is greater than 0 so $(3,-13)$ is the minimum turning point.
- For $x=\frac{-1}{3}, f^{\prime \prime}\left(\frac{-1}{3}\right)=6\left(\frac{-1}{3}\right)-8=-2-8=-10$. This is less than 0 so $\left(\frac{-1}{3}, \frac{149}{27}\right)$ is the maximum turning point.
- To find the point of inflection, set the second derivative equation equal to 0 and solve.
- $f^{\prime \prime}(x)=6 x-8=0->6 x=8$
- $x=\frac{4}{3}$. Sub back into the original equation to find the y coordinate.
- $f\left(\frac{4}{3}\right)=\left(\frac{4}{3}\right)^{3}-4\left(\frac{4}{3}\right)^{2}-3\left(\frac{4}{3}\right)+5=\left(\frac{-101}{27}\right)$
- $\left(\frac{4}{3}, \frac{-101}{27}\right)$ is the point of inflection.

