Society of Actuaries
in Ireland

Trigonometry 2 - Solutions

Trigonometric formulae

Question 1.

We have a mixture of functions of A and 7A on the left side of this equation, which makes it difficult to start solving this equation. We will have to use the formulae for $\cos (A \pm B)$ and $\sin (A \pm B)$ to simplify it. If we let $x=4 A$ and $y=3 A$ then we can express $7 A$ and A in terms of these:

$$
\begin{aligned}
& 7 A=x+y \\
A & =x-y \\
\Rightarrow \quad & (\cos 7 A+\cos A) /(\sin 7 A-\sin A) \\
= & (\cos (x+y)+\cos (x-y)) /(\sin (x+y)-\sin (x-y)) \\
= & ([\cos x \cos y-\sin x \sin y]+[\cos x \cos y+\sin x \sin y]) \\
& \quad /([\sin x \cos y+\cos x \sin y]-[\sin x \cos y-\cos x \sin y]) \\
= & (2 \cos x \cos y) /(2 \cos x \sin y) \\
= & (\cos y) /(\sin y) \\
= & 1 / \tan y \\
= & \cot y \\
= & \cot 3 A
\end{aligned}
$$

Radians

Question 2.

Each runner runs a part of a circle (an arc) with angle θ. Let r be the radius (in metres) of the circle Kate runs on. Then the length of the arc that Kate runs is $\mathrm{r} \theta$ metres.

Since the lanes are both 1.2 m wide, the midpoints of the lanes must be 1.2 m apart, so the radius of the circle Helen runs must be $(r+1.2) \mathrm{m}$. Then the length of the arc that Helen runs is $(r+1.2) \theta$ metres.
\Rightarrow Helen runs 1.2θ metres further than Kate.
$\Rightarrow 1.2 \theta=3$
$\Rightarrow \theta=2.5 \mathrm{rad}$

Solving equations

Question 3.

Let $x=\cos \theta$
We can use the triginometric formulae to express $\cos 2 \theta$ in terms of $\cos \theta$ and $\sin \theta$, and then eliminate $\sin \theta$ so we express it purely in terms of $\cos \theta$. (Recall that $\cos ^{2} \theta$ just means the square of $\cos \theta$.)
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)=2 \cos ^{2} \theta-1=2 x^{2}-1$
$\Rightarrow \quad 2 x^{2}-1=1 / 9$
$\Rightarrow \quad 2 x^{2}=10 / 9$
$\Rightarrow \quad x^{2}=5 / 9$
$\Rightarrow \quad x= \pm \sqrt{5} / 3$
ANSWER: $\quad \cos \theta= \pm \sqrt{5} / 3$

Society of Actuaries

in Ireland
Trigonometry 2 - Solutions
Sine rule, cosine rule, area of a triangle

Question 4.

(a) (i) Find $|\angle C B A|$. Give your answer, in degrees, correct to two decimal places.

$$
\begin{aligned}
\cos B & =\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
& =\frac{120^{2}+134^{2}-150^{2}}{2(120)(134)} \\
& =\frac{9856}{32160} \\
& =0 \cdot 306468 \\
\Rightarrow B & =72 \cdot 15^{\circ}
\end{aligned}
$$

(ii) Find the area of the triangle $A C B$ correct to the nearest whole number.

$$
\text { Area } \begin{aligned}
\triangle A B C=\frac{1}{2} a c \sin B & =\frac{1}{2}(120)(134) \sin 72 \cdot 15 \\
& =7652 \cdot 97 \\
& \approx 7653 \mathrm{~m}^{2}
\end{aligned}
$$

Society of Actuaries

in Ireland

Trigonometry 2 - Solutions

Question 5.

(i) Find the two possible values of $|\angle X Z Y|$. Give your answers correct to the nearest degree.

$$
\begin{aligned}
\frac{3}{\sin 27^{\circ}}=\frac{5}{\sin \angle Z} & \Rightarrow \sin \angle Z=\frac{5 \sin 27^{\circ}}{3}=0.756 \\
& \Rightarrow|\angle Z|=49^{\circ} \text { or }|\angle Z|=131^{\circ}
\end{aligned}
$$

- $\operatorname{Sin}^{-1}(0.756)=49.11^{\circ}$
- Sin is positive in the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrants
- $180^{\circ}-49^{\circ}=131^{\circ}$
(ii) Draw a sketch of the triangle $X Y Z$, showing the two possible positions of the point Z.

In the case that $|\angle X Z Y|<90^{\circ}$, write down $|\angle Z X Y|$, and hence find the area of the triangle $X Y Z$, correct to the nearest integer.

$$
\begin{aligned}
& |\angle Z X Y|=180^{\circ}-\left(27^{\circ}+49^{\circ}\right)=104^{\circ} \\
& \Delta=\frac{1}{2} a b \sin C=\frac{1}{2}(5)(3) \sin 104^{\circ}=7 \cdot 27=7 \mathrm{~cm}^{2}
\end{aligned}
$$

- Use 49° as $49^{\circ}<90^{\circ}$
- 27° is the angle at Y
- All angles must sum to 180° so the remaining angle must equal 104°

Longer questions

Question 6.

(a)

$$
\begin{gathered}
\sin \frac{1}{2} \alpha=\frac{15}{150}=0.1 \\
\Rightarrow \frac{1}{2} \alpha=5.739^{\circ} \\
\Rightarrow \alpha=11.478^{\circ} \\
\quad \alpha=11.5^{\circ}
\end{gathered}
$$

(b)

$$
\begin{aligned}
|A H|^{2} & =190^{2}+385^{2}-2(190)(385) \cos 18^{\circ} \\
& =36100+148225-139139 \cdot 5683 \\
& =45185 \cdot 4317 \\
|A H| & =212 \cdot 57=213
\end{aligned}
$$

Part (b) - alternative solution by splitting triangle into two right triangles:

Draw $A X$ perpendicular to $T H$
triangle $A T X: \quad \sin 18^{\circ}=\frac{|A X|}{190} \Rightarrow|A X|=58.71$

$$
\begin{aligned}
& \cos 18^{\circ}=\frac{|T X|}{190} \Rightarrow|T X|=180 \cdot 7 \\
& \Rightarrow|X H|=204 \cdot 3 \\
& \Rightarrow|A H|^{2}=(58.71)^{2}+(204 \cdot 3)^{2} \\
& \Rightarrow|A H|=212 \cdot 566=213
\end{aligned}
$$

Society of Actuaries

Trigonometry 2 - Solutions

(c)
(i)

The ball is at K at time $t=0$ so the height of K is $h(0)=8$.
Answer: 8 m
(ii)

The ball reaches the point B when its height is zero. This occurs at a time t that satisfies $h(t)=0$.

$$
-6 t^{2}+22 t+8=0
$$

Solve this using the quadratic formula. The solutions are 4 and $-1 / 3$. We take the positive solution $\mathrm{t}=4$.

The horizontal speed is $38 \mathrm{~m} / \mathrm{s}$.
The travel time is 4 s .
\Rightarrow The horizontal distance is $38 \times 4=152 \mathrm{~m}$.
Let α be the angle of elevation. Then $\tan (\alpha)=8 / 152$.
$\tan ^{-1}(8 / 152)=3.01^{\circ}$

Answer: 3°
(d)
(i)
$\tan (\theta)=1 / 2 \Rightarrow h / d=1 / 2$
$\Rightarrow d=2 h$
From the diagram we can see that:
$|C D|=25-h$
(ii)

We have a right triangle GDC with sides of length $2 \mathrm{~h},(25-\mathrm{h})$ and 25 (the hypotenuse). By Pythagoras: $25^{2}=(2 h)^{2}+(25-h)^{2}$

$$
=4 h^{2}+25^{2}+h^{2}-50 h
$$

$\Rightarrow 5 h^{2}=50 h$
$\Rightarrow \mathrm{h}=10$

Trigonometry 2 - Solutions

Question 7.

(a)	$\|E C\|^{2}=3^{2}+2 \cdot 5^{2}=15 \cdot 25$
(i)	$\|E C\|=\sqrt{15 \cdot 25}$
	$\|E C\|=3.905$
$\Rightarrow\|A C\|=1.9525$	
$=1.95$	
(a)	$\tan 50^{\circ}=\frac{\|A B\|}{1.95}$ (ii)
	$\|A B\|=1.95(1.19175)=2.23239$

Trigonometry 2 - Solutions

(iii)	$\begin{gathered} \|B C\|^{2}=1.95^{2}+2 \cdot 3^{2} \\ \|B C\|=3 \cdot 015377 \\ \|B C\|=3 \end{gathered}$ Also: $\sin 40^{\circ}=\frac{1 \cdot 95}{\|B C\|}$ or $\cos 40^{\circ}=\frac{2 \cdot 3}{\|B C\|}$ $\cos 50^{\circ}=\frac{1 \cdot 95}{\|B C\|} \text { or } \sin 50^{\circ}=\frac{2 \cdot 3}{\|B C\|}$
(a) (iv)	$\begin{gathered} 3^{2}=3^{2}+2 \cdot 5^{2}-2(3)(2 \cdot 5) \cos \alpha \\ 15 \cos \propto=6 \cdot 25 \\ \propto=65^{\circ} \\ \text { or } \\ \cos \propto=\frac{1 \cdot 25}{3} \\ \propto=65^{\circ} \end{gathered}$

Trigonometry 2 - Solutions
(a)
(v) $A=2 \times$ isosceles triangle $+2 \times$ equilateral triangle

$$
\begin{gathered}
=2 \times\left[\frac{1}{2}(2.5)(3) \sin 65^{\circ}\right]+ \\
2 \times\left[\frac{1}{2}(3)(3) \sin 60^{\circ}\right] \\
=14.59 \\
A=15
\end{gathered}
$$

(b)

$$
\begin{gathered}
\tan 60^{\circ}=\frac{3}{|C A|} \\
\Rightarrow|C A|=\sqrt{3} \\
|C E|=2 \sqrt{3} \\
x^{2}+x^{2}=(2 \sqrt{3})^{2} \\
x=\sqrt{6}
\end{gathered}
$$

