Hints and Tips - Complex Numbers \& Proof by Induction

$i=\vee(-1)$

Where N is all Natural Numbers, Z is all Integers, Q is all Rational Numbers, R is all Real Numbers, I is all Imaginary Numbers and C is all Complex Numbers

Plotting a complex number on Argand diagram $z=1-1.8 i$

Conjugates

Conjugate of $a+b i=\overline{a+b i}=a-b i$

$$
\begin{aligned}
& \overline{Z_{1} Z_{2}}=\overline{Z_{1}} \cdot \overline{z_{2}} \\
& \overline{Z_{1}+Z_{2}}=\overline{Z_{1}}+\overline{z_{2}}
\end{aligned}
$$

To divide by a complex number - multiply by 1 using conjugate above \& below line i.e. :

$$
\frac{a+b i}{e+f i} \Rightarrow \frac{a+b i}{e+f i} \times \frac{e-f i}{e-f i}
$$

Conjugate is equivalent to reflection in the real axis.

Modulus is the distance of point from point 0 (i.e. from $0+0 \mathrm{i}$) on Argand diagram

$$
|x+i y|=\sqrt{ }\left(x^{2}+y^{2}\right)
$$

$\operatorname{Cos} \theta=x / r \quad \operatorname{Sin} \theta=y / r$
$\operatorname{Tan} \theta=\mathrm{y} / \mathrm{x}$
$\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$
Polar Form:
Polar Form of z, where $z=x+i y$ is $r \operatorname{Cos} \theta+i r \operatorname{Sin} \theta$ where $r=|x+i y|$ so $r>=0$
Using $\operatorname{Cos} \theta=x / r \quad \operatorname{Sin} \theta=y / r$

De Moivre's Thoerom

$[r \operatorname{Cos} \theta+i r \operatorname{Sin} \theta]^{k}=\left[r^{k} \operatorname{Cos}(k \theta)+i r^{k} \operatorname{Sin}(k \theta)\right]=r^{k}(\operatorname{Cos}(k \theta)+\operatorname{Sin}(k \theta))$
θ or angle/argument is measured in radians

To find k roots use using De Moivre's Theorem set:
$r^{1 / k}(\operatorname{Cos}(\theta / k+2 n \pi / k)+\operatorname{Sin}(\theta / k+2 n \pi / k))$ for $n=0,1, \ldots, k-1$

Proof by Induction

Step 1: Show that the proposition is true for $n=1$
(insert your workings to show outcome.....)

Hence, proposition is true for $n=1$

Step 2: Assume that the proposition is true for $n=k$

Step 3: Prove that the proposition is true for $n=k+1$, given that it is true for $n=k$.
(insert your workings to show outcome for $k+1$ \& how it relates to outcome for $k . . .$. .)
\therefore The proposition is true for $n=k+1$, given that it is true for $n=k$.

Step 4: State that proposition is true for $n=1$ and if the proposition is true for $n=k$, it will be true for $\boldsymbol{n}=\boldsymbol{k}+\mathbf{1}$, therefore by induction it is true for all $\boldsymbol{n} \in \mathrm{N}$

