Society of Actuaries

in Ireland

Geometry 1 Tutorial - Solutions

Q1
Hint: Rearrange equation to equation of a line i.e. $y=m x+c$

Line	Equation	$\mathbf{y}=\mathbf{m x}+\mathbf{c}$	\mathbf{m}
h	$\mathrm{x}=3-\mathrm{y}$	$\mathrm{y}=-\mathrm{x}+3$	-1
i	$2 \mathrm{x}-4 \mathrm{y}=3$	$\mathrm{y}=\frac{1}{2} x-\frac{3}{4}$	$\frac{1}{2}$
k	$\mathrm{y}=-\frac{1}{4}(2 x-7)$	$\mathrm{y}=-\frac{1}{2} x+\frac{7}{4}$	$-\frac{1}{2}$
l	$4 \mathrm{x}-2 \mathrm{y}-5=0$	$\mathrm{y}=2 \mathrm{x}-\frac{5}{2}$	2
m	$\mathrm{x}+\sqrt{3} y-10=0$	$\mathrm{y}=-\left(\frac{1}{\sqrt{3}}\right) x+\frac{10}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$
n	$\sqrt{3} x+y-10=0$	$\mathrm{y}=-\sqrt{3} x+10$	$-\sqrt{3}$

(a) Complete table below by matching each description given to one or more of the lines.

Description	Line(s)
A line with a slope of 2	l
A line which intersects the y-axis at $\left(0,-2 \frac{1}{2}\right)$	l
A line which makes equal intercepts on the axes	$\mathrm{h} \ldots .(0,3) \&(3,0)$
A line which makes an angle of 150° with the positive sense of the x -axis	$\mathrm{k}, \mathrm{l} \ldots . \mathrm{m} 1^{*} \mathrm{~m} 2=-1$
Two lines which are perpendicular to each other	$-\frac{1}{\sqrt{3}}$

(b) Hint: Check P19 of your log tables for a formula.

Society of Actuaries

in Ireland

$$
\begin{aligned}
& \text { Slopes of lines were calucalted above as } m=-\frac{1}{\sqrt{3}} \text { and } n=-\sqrt{3} \\
& \text { Tan } \alpha=\frac{m 1-m 2}{1+m 1 m 2} \text { or } \frac{m 2-m 1}{1+m 1 m 2} \quad \ldots . \text { Page } 19 \text { of tables } \\
& \text { Tan } \alpha=\frac{-\frac{1}{\sqrt{3}}-(-\sqrt{3})}{1+\left(-\frac{1}{\sqrt{3}}\right)(-\sqrt{3})} \text { or } \frac{-\sqrt{3}-\left(-\frac{1}{\sqrt{3}}\right)}{1+\left(-\frac{1}{\sqrt{3}}\right)(-\sqrt{3})} \quad \ldots \text { discard-neg } \\
& \text { Tan } \alpha=\frac{1.154701}{2} \text { or } \frac{2}{2 \sqrt{3}} \\
& \text { Tan } \alpha=0.57735 \text { or } \frac{1}{\sqrt{3}} \\
& \text { Answer: } \alpha=30^{\circ}
\end{aligned}
$$

Q 2(a)

Line	Equation	$\mathbf{y}=\mathbf{m x}+\mathbf{c}$	Cuts y -axis	Cuts x -axis
l	$\mathrm{x}+2 \mathrm{y}=-4$	$\mathrm{y}=-\frac{1}{2} x-2$	$(0,-2)$	$(-4,0)$
m	$2 \mathrm{x}-\mathrm{y}=-4$	$\mathrm{y}=2 x+4$	$(0,4)$	$(-2,0)$
j	$\mathrm{x}+2 \mathrm{y}=8$	$\mathrm{y}=-\frac{1}{2} x+4$	$(0,4)$	$(8,0)$
n	$2 \mathrm{x}-\mathrm{y}=2$	$\mathrm{y}=2 \mathrm{x}-2$	$(0,-2)$	$(1,0)$

(b) Scale is 6 mm per unit - add the numbers to the diagram

(c)

Intercepts for k are (0,2) and (4,0) ... from observation
Slope of k is $\frac{(y 2-y 1)}{(x 2-x 1)}=\frac{(0-2)}{(4-0)}=-\frac{1}{2}$
Equation of $k: \quad(y-y 1)=m(x-x 1)$

$$
\begin{aligned}
& (y-2)=-\frac{1}{2}(x-0) \\
& 2 y-4=-x \\
& x+2 y-4=0
\end{aligned}
$$

Society of Actuaries
in Ireland

Q 3(a)

Hints: - Find the slope of $A C$

- Turn the fraction upside-down and multiply by -1
- This gives you the slope of a perpendicular line to AC

Slope of $\|\mathrm{AC}\|=\frac{(y 2-y 1)}{(x 2-x 1)}=\frac{(-2-4)}{(6-(-3))}=\frac{-6}{9}=-\frac{2}{3}$
Slope of Perpendicularlline through B is $\frac{3}{2}$
Use $(y-y \mathbb{1})=m(x-x 1)$ to find equation of line where $(x 1, y 1)$ is $(5,3)$ and m is $\frac{3}{2}$

$$
\begin{aligned}
& (y-3)=\frac{3}{2}(x-5) \\
& 2 y-6=3 x-15 \\
& 3 x-2 y-9=0
\end{aligned}
$$

(b) Hints: - Find the equation of the line through C which is perpendicular to $A B$

- Use your answer from (a) and simultaneous equations to get the answer


```
Slope of Perpendicullar line through A is a
Use \((y-y 1)=m(x-x 1)\) to find equation of line
where \((x 1, y 1)\) is \((6,-2)\) and \(m\) is 8
\[
\begin{aligned}
& (y-(-2))=8(x-6) \\
& y+2=8 x-48 \\
& 8 x-y-50=0
\end{aligned}
\]
Sollwe the simmultameaus equarions
\(8 x-y-50=0\) and \(3 x-2 y-9=0\)
Point offintersection is (7, 6) \(=\) orthocemtme
```


Society of Actuaries

in Ireland

Q4 (a)

Use $(y-v I)=m(x-x \|)$ to find equation of line $\|A B\|$ where $(x 1,4)$ is $(2,2)$ and m is -2

$$
\begin{aligned}
& (y-2)=-2(x-2) \\
& y-2=-2 x+4 \\
& 2 x+y-6=0
\end{aligned}
$$

(b)

Rewrite $\|A B\|$ in the format $y \equiv m x+c$

$$
\begin{aligned}
& 2 x+y-6=0 \\
& y=-2 x+6
\end{aligned}
$$

c (the y-axis intercept) $=6 \quad$ OR $\quad y=6$ when $x=0$

So D is the point $(0,6)$
(c)
($x 1, y 1$) is $C(-2,-3)$ and the line $(a x+b y+c=0)$ is $2 x+y-6=0$
$\frac{|2(-2)+1(-3)-6|}{\sqrt{2^{2}+1^{2}}}=\frac{13}{\sqrt{5}}$

Society of Actuaries
in Ireland
(d)
Area of Triante $=$ Half the bast by the perpendicular heght
Base $=|A D|=\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}}=\sqrt{20}$
Perpendicular Height $=\frac{13}{\sqrt{5}}$
Area $=\frac{1}{2}+\sqrt{20} \cdot \frac{13}{\sqrt{5}}=13$ spuare unte

Q5 (a)
Hint: Area $=1 / 2$ base \times perpendicular height

Use the formula for area on page 18 of the wales OR
Use the triangle area formula "half the base by the perpendicular height"

$$
\begin{array}{r}
\frac{1}{2}|O R| .10=\frac{125}{3} \\
{[\mathrm{OR}]=\frac{25}{3}} \\
\operatorname{R}\left(-\frac{25}{3}, 0\right)
\end{array}
$$

(b)

METHOD 1: Get the equation for the line \|RS\| and show that E is on the line
Slope of $|R S|=\frac{(y 2-y 1)}{(x 2-x 1)}=\frac{(10-0)}{\left(0-\left(-\frac{25}{3}\right)\right.}=\frac{10}{\left(\frac{25}{3}\right)}=\frac{30}{25}=\frac{6}{5}$
Equation of $|R S|$ is $(y-y 1)=m(x-x 1)$.....use $\frac{6}{5}$ for m and $(0,10)$ for $(x 1, y 1)$ $(y-10)=\frac{6}{5}(x-0) \Rightarrow 5 y-50=6 x \Rightarrow$ Equation of $\|P S\|$ is $6 x-5 y \div 50=0$

Put $E(-5,4)$ into the equation of the line
$6(-5)-5(4)+50=-30-20+50=0$.... SO E is on the line \|RS\|

Society of Actuaries

in Ireland

METHOD 2: Show that the slope of |RE| $=$ slope of $|E S|$
Slope of $[E S]=\frac{(y 2-y 1)}{(x 2-x 1)}=\frac{(10-4)}{(0-(-5))}=\frac{6}{5}$
Slope of $\| R E \left\lvert\,=\frac{(y 2-y 1)}{(x 2-x 1)}=\frac{(4-0)}{\left(-5-\left(-\frac{25}{3}\right)\right)}=\frac{4}{\frac{10}{3}}=\frac{12}{10}=\frac{6}{5}\right.$
So E is on the line |RS|

(c)

$y=m x+c$
The point $\mathrm{E}(-5,4)$ is on this line, so substituting for x and y $4=-5 m+c . . . c=4+5 m$ \qquad A

This line cuts the y-axis at $(0, c)$ and the x-axis at $\left(\frac{c}{-1,0}, 0\right)$
The area of the triangle is $\frac{125}{3}$
This equals $\frac{1}{2}|x 1 y 2-x 2 y|=\frac{1}{2}\left|0-c\left(-\frac{c_{2}}{m}\right)\right|=\frac{1}{2}\left|\frac{c^{2}}{m}\right|$
Substituting from A above $\frac{125}{3}=\frac{1}{2}\left|\frac{4+5 \text { sma })^{2}}{7}\right|$
$250 m=75 m^{2}+120 m+48$
$75 m^{2}-130 n+48=0$
$(5 m-6)(15 m-8)=0$
... ($5 m-6$) relates to the line $|\mathrm{RS}|$, so
$m=\frac{8}{15}$ and $c=4+5\left(\frac{8}{15}\right)=\frac{20}{3}$

Q6 (a) Hint: Find both slopes.

Find the slope of $\mathrm{L} 1: 3 x-4 y-12=0$

$$
\begin{aligned}
3 x & -4 y-12=0 \\
4 y & =3 x-12 \\
y & =\frac{3}{4} x-3 \quad \text {.... slope of } L 1=\frac{3}{4}
\end{aligned}
$$

$|A B|$ perpendicular to $L 1$ so slope of $|A B|$ is $-\frac{4}{3}$
Slope of $|\mathrm{AB}|=\frac{(y 2-y 1)}{(x 2-x 1)}=\frac{(t-(-1))}{(7-4)}=\frac{(t+1)}{(3)}$
$\frac{(t+1)}{(3)}=-\frac{4}{3} \quad \ldots \ldots . \quad \mathrm{t}+1=-4 \quad \ldots \ldots . \quad \mathrm{t}=-5$

Society of Actuaries

in Ireland

Q6 (b) Hint: Use the perpendicular distance formula
Use the formula for the parpendicular distance from point $(x 1, y 1)$ to line ax thy $+c=0$

$$
\frac{\|a x+b y 1+c\|}{\sqrt{a^{2}+b^{2}}}
$$

$(x 1, y 1)$ is $(10, k)$ and the line $(a x+b y+c=0)$ is $3 x-4 y-12=0$

$$
\begin{gathered}
\frac{\mid 3(10)-4(k)-12 \|}{\sqrt{3^{2}+4^{2}}} \\
\frac{\|18-4 k\|}{5}
\end{gathered}
$$

(c) (i)

Use the formula for the perpendicular distance to get the distance in terms of It from P to 12
$(x 1, y 1)$ is $(10, k)$ and the line $(a x+b y+c=0)$ is $5 x+12 y-20=0$

$$
\begin{gathered}
\frac{|5(10)+12(k)-20|}{\sqrt{5^{2}+12^{2}}} \\
\frac{|30+12 k|}{13}
\end{gathered}
$$

P is equidistant from lid and 12
$S 0 \frac{(18-4 k)}{5}=\frac{(30+12 k)}{12} \quad$ OR $\quad \frac{(18-48)}{5}=-\frac{(30+12 k)}{13}$
$k=\frac{3}{4} \quad$ OR $\quad k=-48$
(ii)

$$
k>0 \text { so } k=\frac{3}{4}
$$

Use one of the previous results and insert the value for k Perpendicular distance
$=\frac{(16-45)}{5}=\frac{(14-4(4))}{5}=\frac{(18-3)}{5}=3$

Society of Actuaries

in Ireland

(a) Show that, for all $k \in \mathbb{R}$, the point $P(4 k-2,3 k+1)$ lies on the line $l_{1}: 3 x-4 y+10=0$.

If $(x, y)=(4 k-2,3 k+1)$ then

$$
\begin{aligned}
3 x-4 y+10 & =3(4 k-2)-4(3 k+1)+10 \\
& =12 k-6-12 k-4+10 \\
& =0
\end{aligned}
$$

So the equation of l_{1} is satisfied.
Therefore $(4 k-2,3 k+1)$ lies on l_{1}.

(b) The line l_{2} passes through P and is perpendicular to l_{1}. Find the equation of l_{2} in terms of k.

We have

$$
\begin{aligned}
3 x-4 y+10 & =0 \\
& \Leftrightarrow \\
-4 y & =-3 x-10 \\
& \Leftrightarrow \\
y & =\frac{3}{4} x+\frac{5}{2}
\end{aligned}
$$

Therefore the slope of l_{1} is $\frac{3}{4}$. Therefore the slope of l_{2} is $\frac{1}{\frac{3}{4}}=-\frac{4}{3}$. So l_{2} has slope $-\frac{4}{3}$ and passes through ($4 k-2,3 k+1$). So it has equation

$$
y-(3 k+1)=-\frac{4}{3}(x-(4 k-2))
$$

or

$$
3 y-3(3 k+1)=-4(x-(4 k-2))
$$

Rearranging this gives

$$
4 x+3 y-25 k+5=0
$$

(c) Find the value of k for which l_{2} passes through the point $Q(3,11)$.

The equation of l_{2} is

$$
4 x+3 y-25 k+5=0
$$

Now $(3,11)$ lies on l_{2} if and only if $4(3)+3(11)-25 k+5=0 \Leftrightarrow 25 k=50 \Leftrightarrow k=2$. So the $k=2$ is the required value.

Society of Actuaries

in Ireland

(d) Hence, or otherwise, find the co-ordinates of the foot of the perpendicular from Q to l_{1}.

When $k=2$ the equation of l_{2} is

$$
4 x+3 y-45=0
$$

So to find the required point, we solve

$$
\begin{aligned}
& 3 x-4 y+10=0 \\
& 4 x+3 y-45=0
\end{aligned}
$$

simultaneously.
This is equivalent to

$$
\begin{aligned}
& 12 x-16 y+40=0 \\
& 12 x+9 y-135=0
\end{aligned}
$$

Subtracting yields

$$
-25 y+175=0
$$

Therefore $25 y=175$ and $y=\frac{175}{25}=7$.
Now $3 x-4(7)+10=0 \Leftrightarrow 3 x=4(7)-10=18 \Leftrightarrow x=6$. So the foot of the perpendicular from Q to l_{1} has co-ordinates $(6,7)$.

Q8

Solutions

Start by drawing a graph to visualise the problem.

(a) Slope of line $j=\frac{-a}{b}=\frac{-(3)}{(-2)}=\frac{3}{2}$, slope of line $k=\frac{-a}{b}=\frac{-(3)}{(1)}=-3$
$\tan \theta=\left|\frac{\left(\frac{3}{2}\right)-(-3)}{1+\left(\frac{3}{2}\right)(-3)}\right|=\left|\frac{\frac{3}{2}+3}{1-\frac{9}{2}}\right|=\left|\frac{\frac{9}{2}}{\frac{-7}{2}}\right|=\left|-\frac{9}{7}\right|=\frac{9}{7} \Rightarrow \theta=\tan ^{-1} \frac{9}{7} \approx 52 \cdot 1^{\circ}$
This gives the acute angle. The obtuse angle is $180-52 \cdot 1=127 \cdot 9^{\circ}$.
(b) $|\angle P Q R|=52 \cdot 1^{\circ}$
(c) Slope of $P Q=$ slope of $j=\frac{3}{2}$. Let slope of $Q R_{1}=m$.

Use the formula to find the angle between two lines. Either slope could be m_{1} and m_{2} so there are two options:
$\tan 45^{\circ}=1=\left|\frac{\frac{3}{2}-m}{1+\frac{3}{2} m}\right|$ or $\tan 45^{\circ}=1=\left|\frac{m-\frac{3}{2}}{1+\frac{3}{2} m}\right|$.

Society of Actuaries
in Ireland

$$
\begin{aligned}
& 1=\left|\frac{\frac{3}{2}-m}{1+\frac{3}{2} m}\right| \Rightarrow 1+\frac{3}{2} m=\frac{3}{2}-m \Rightarrow \frac{5}{2} m=\frac{1}{2} \Rightarrow m=\frac{1}{5} \\
& 1=\left|\frac{m-\frac{3}{2}}{1+\frac{3}{2} m}\right| \Rightarrow 1+\frac{3}{2} m=m-\frac{3}{2} \Rightarrow \frac{3}{2} m-m=-\frac{3}{2}-1 \Rightarrow m=-5
\end{aligned}
$$

From the diagram, the slope of $Q R_{1}$ is negative, so $m=-5$. We know one point on the line: $\left(x_{1}, y_{1}\right)=Q=(6,6)$.
Equation of the line: $y-y_{1}=m\left(x-x_{1}\right) \Rightarrow y-(6)=(-5)(x-(6))$
$\Rightarrow 5 x+y-36=0$
x intercept: $y=0 \Rightarrow 5 x+(0)-36=0 \Rightarrow x=\frac{36}{5}=7 \cdot 2$
The co-ordinates of R_{1} are ($7 \cdot 2,0$).

