Please note: All attempts have been made to ensure the accuracy and reliability of the information provided in this document.

Coordinate Geometry: The Line - Hints \& Tips

General Hints and Tips

1 Always draw diagrams. This is useful in every question, but it is particularly helpful with questions relating to the circle or more difficult questions.

2 Make sure you know which formulae are in the tables, and where in the tables they are.
Formulae in the tables:
Slope of a line
$\frac{(\mathrm{y} 2-\mathrm{y} 1)}{(\mathrm{x} 2-\mathrm{x} 1)}$
Distance between 2 points
$\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}}$
Midpoint formula
$\left(\frac{x 1+x 2}{2}, \frac{y 1+y 2}{2}\right)$
Equation of a line (2 different formats)

- $\quad(y-y 1)=m(x-x 1)$

Area of a triangle with one point at the origin

- $\quad(1 / 2|x 1 y 2-x 2 y 1|)$

Point dividing a line segment in the ratio a:b
-
To find the angle between 2 lines:

- $\quad \operatorname{Tan} \theta= \pm(m 1-m 2) /(1+m 1 . m 2)$

Perpendicular distance from a point to a

- line

$$
\frac{|a x 1+b y 1+c|}{\sqrt{a^{2}+b^{2}}}
$$

3 Learn other formulae off by heart.
© The Society of Actuaries in Ireland

Society of Actuaries in Ireland

The Line

1 To get an equation of a line you always need 2 things:

- A point
- A slope

Once you have these, use the formula $y-y_{1}=m\left(x-x_{1}\right)$

2 To check if a point is on a line, substitute it into the equation.
If the answer $=0$, then the point is on the line, otherwise it is not.

3 To plot a line, you need two points on the line.
An easy way to find points on a line is:
Let $x=0$, solve for y. This will give you a point $(0, y)$
Let $y=0$, solve for x. This will give you a point $(x, 0)$
Use these two points to plot the line.

4 If a line intersects the \mathbf{x}-axis, then $\mathbf{y}=0$ at that point.
If a line intersects the \mathbf{y}-axis, then $\mathbf{x}=\mathbf{0}$ at that point.

5 Use simultaneous equations to find the point of intersection between 2 lines.

6 If lines are parallel, their slopes are equal.
If lines are perpendicular, then multiplying their slopes together equals -1 ($\mathbf{m}_{1} \cdot \mathbf{m}_{\mathbf{2}}=\mathbf{- 1}$)
An example - you want the slope of a line and are told it is perpendicular to another line with slope $2 / 3$
Turn it upside down and change the sign of it. So in this case, the slope of the line you want is $-3 / 2$

8 To use the area of a triangle formula $\left(1 / 2\left|x_{1} y_{2}-x_{2} y_{1}\right|\right)$ one of the points needs to be $(0,0)$. If you are looking for the area of a triangle, where no points are at the origin $(0,0)$, use translations to bring one of the points to $(0,0)$ and then use the formula as normal. Alternatively, you can use the area $=1 / 2$ base \times perpendicular height formula.

9 If 3 or more points lie on the same line, they are said to be collinear.
To check if 3 points (e.g. a, b, c) are collinear, see what the slopes of $|a b|$ and $|b c| a r e$. If they are the same, then the points are collinear, otherwise they are not.
An alternative way of doing this is to calculate the area of the triangle using the 3 points.
If the area $=0$, then the points are collinear, otherwise they are not.

