Coordinate Geometry: The Circle - Hints \& Tips

General:

Circle

- The equation of a circle has an x^{2} term and a y^{2} term.
- Equation of a circle with centre $(0,0)$ and radius $r: x^{2}+y^{2}=r^{2}$.
- Equation of a circle with centre (h, k) and radius $r:(x-h)^{2}+(y-k)^{2}=r^{2}$ (Page 19)
- General equation of a circle: $x^{2}+y^{2}+2 g x+2 f y+c=0$ (Page 19).
- Centre $=(-g,-f)$.
- Radius $=\sqrt{g^{2}+f^{2}-c}$

When to use $(x-h)^{2}+(y-k)^{2}=r^{2}$:

Circle

When to use the equation $(x-h)^{2}+(y-k)^{2}=r^{2}$

- If we know centre (h, k) and the radius use this equation.
- If we know the centre and a point on the circle:
- Calculateradiusas distance between centre and the point on the circle.
- If we know the centre of the circle, it's easier to use the equation $(x-h)^{2}+(y-k)^{2}=r^{2}$

When to use $x^{2}+y^{2}+2 g x+2 f y+c=0:$

Circle

- If we have 3 points on the circle:
- Substitute each point into the equation of the circle.
- This will give 3 equations with 3 unknowns (g, f and c). Solve simultaneous equations.
- If we have 2 points on the circle and equation of a line containing centre of circle:
- Substitute each point into the equation of the circle.
- Substitute (-g, -f) into the equation of the line.
- This willgiven 3 equations with 3 unknowns (g, f and c). Solve simultaneous equations.
- There may be other scenariosgiven but if you can either get 3 points on the circleor 2 points on the circle and the equation of a line with the centre, then you can use the formula $x^{2}+y^{2}+2 g x+$ $2 f y+c=0$.

Tangents:

Circle

- A tangent is a line which touches the circle at exactly one point.
- The slope of the tangent and the slope of the radius at the point of intersection are perpendicular.
- If we have the equation of a tangent and the point of intersection then we can find an equation of a line containing the centre of the circle.
- If a circle has the xaxis as a tangent then: $g^{2}=c$
- If a circle has the yaxis as a tangent then: $f=c$
- If a circle has the xaxis and yaxis as tangents then:
- $g^{2}=f^{2}=c$
- $g=+/-f$

Circles Touching:

Circle

Circles Touching

- If two circles touch externally, the distance between the centres is the sum of their radii i.e. $r 1+r 2=d$
- If two circles touch internally, the distance between the centres is the difference of their radii i.e. $\mathrm{r} 1-\mathrm{r} 2=\mathrm{d}$

Points on, outside or inside a circle:

Circle

Points on, outside or inside circle

- If a point is on the circle: distance from the centre to the pointis equal to the radius
- If a point is inside the circle: distance from the centre to the pointis less to the radius
- If a point is outside the circle: distance from the centre to the pointis greater to the radius

Point(s) of Intersection between Line and Circle:

Circle

Finding point(s) of intersection between line and circle

- If we know the equation of the circle and know the equation of the line that intersects the circle:
- Get x in terms of y from the equation of the line, or y in terms of x. E.g. If the equation of the line is $2 y=x+3$. Then $x=2 y-3$.
- Substitute this new term for x into the equation of the line. E.g. If the equation of the circle is $(x-3)^{2}+(y-6)^{2}=36$ the substitute $(2 y-3)$ for each x term in the equation of the circle.
- Solve the quadratic equation to find the y coordinates at the points of intersection.
- Sub back in the values of y from above into the equation of the line to find the x coordinates.
- If the lineis a tangent then there willonly be one point of intersection

Chords:

Circle

Perpendicular bisector of a chord

- A chord is a line joining two points on the circumference of a circle.
- A diameter is a type of chord.
- The perpendicular bisector of a chord is a line containing the centre of the circle.
- A bisector divides the chord into two equal parts.

Common Chord/ Tangent

- If two circles have the same chord/tangent in common then to find the equation of the tangent:
- Use the equation $\mathrm{C}_{1}-\mathrm{C}_{2}=0$ where C_{1} and C_{2} are the equations of the circles in the form $x^{2}+y^{2}+2 g x+2 f y+c=0$
- You can only use this if the x^{2} and y^{2} terms have the same coefficient for both circles. (i.e. when you subtract $C_{1}-C_{2}$, the x^{2} and y^{2} terms cancel out.

