Question A

(i) If $z^{1}=2+3 i$ and $z^{2}=1-2 i$ find:

- $2 z^{1}+z^{2}$
- $Z 1 Z^{2}$
- $Z_{1}-i Z 2$
- $\left|2+z_{1}\right|$
- $\frac{z_{1}}{z_{2}}$
- $\overline{2 z_{1}+z_{2}}$
(ii) Write the following in polar format

$$
\begin{aligned}
& 2+2 i \\
& -2 \sqrt{2}+2 \sqrt{2} i
\end{aligned}
$$

Question B

(a) $z=6+2 i$, where $i^{2}=-1$.
(i) Show that $z-i z=8-4 i$.
(ii) Show that $|z|^{2}+|i z|^{2}=|z-i z|^{2}$
(iii) The circle c passes through the points $z, i z$, and 0 , as shown in the diagram below (not to scale). z and $i z$ are endpoints of a diameter of the circle. Find the area of the circle c in terms of π.

(b) $(\sqrt{ } 3-i)^{9}$ can be written in the form $a+i b$, where $a, b \in \mathbb{Z}$ and $i^{2}=-1$. Use de Moivre's Theorem to find the value of a and the value of b.

Question C

(a) $\frac{(4-2 i)}{(2+4 i)}=0+k i$, where $k \in \mathbb{Z}$, and $i^{2}=-1$. Find the value of k.
(b) Find $\sqrt{-5+12 i}$.

Give both of your answers in the form $a+b i$, where $a, b \in \mathbb{R}$.
(c) Use De Moivre's theorem to find the three roots of $z^{3}=-8$.

Give each of your answers in the form $a+b i$, where $a, b \in \mathbb{R}$, and $i^{2}=-1$.

Question D

(a) Find the two complex numbers z_{1} and z_{2} that satisfy the following simultaneous equations, where $i^{2}=-1$:

$$
\begin{array}{cc}
i z_{1} & =-4+3 i \\
3 z_{1}-z_{2} & =11+17 i .
\end{array}
$$

Write your answers in the form $a+b i$ where $a, b \in \mathbb{Z}$.
(b) The complex numbers $3+2 i$ and $5-i$ are the first two terms of a geometric sequence.
(i) Find r, the common ratio of the sequence.

Write your answer in the form $a+b i$ where $a, b \in \mathbb{Z}$.
Hint for Geometric sequence $a_{n}=a_{1} r^{n-1}$
(ii) Use de Moivre's Theorem to find T_{9}, the ninth term of the sequence.

Write your answer in the form $a+b i$, where $a, b \in \mathbb{Z}$.

Question E

(a) $3+2 i$ is a root of $z^{2}+p z+q=0$, where $p, q \in \mathbb{R}$, and $i^{2}=-1$.

Find the value of p and the value of q.
(b) (i) $v=2-2 \sqrt{3} i$. Write v in the form $r(\cos \theta+i \sin \theta)$, where $r \in \mathbb{R}$ and $0 \leq \theta \leq 2 \pi$.
(ii) Use your answer to part (b)(i) to find the two possible values of w, where $w^{2}=v$. Give your answers in the form $a+i b$, where $a, b \in \mathbb{R}$.

Question F

$$
z=\frac{4}{1+\sqrt{3} i} \text { is a complex number, where } i^{2}=-1
$$

(a) Verify that z can be written as $1-\sqrt{3} i$.
(b) Plot z on an Argand diagram and write z in polar form.
(c) Use De Moivre's theorem to show that $z^{10}=-2^{9}(1-\sqrt{3} i)$.

Question G

(a) $(-4+3 i)$ is one root of the equation $a z^{2}+b z+c=0$, where $a, b, c \in \mathbb{R}$, and $i^{2}=-1$. Write the other root.
(b) Use De Moivre's Theorem to express $(1+i)^{8}$ in its simplest form.
(c) $(1+i)$ is a root of the equation $z^{2}+(-2+i) z+3-i=0$.

Find its other root in the form $m+n i$, where $m, n \in \mathbb{R}$, and $i^{2}=-1$.

Question H

Prove using induction that $2^{3 n-1}+3$ is divisible by 7 for all $n \in \mathbb{N}$.

Question I

Prove using induction that, for all $n \in \mathbb{N}$, the sum of the first n square numbers can be found using the formula:

$$
1^{2}+2^{2}+3^{2}+4^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

