Question A

(i) If
$$z_1 = 2 + 3i$$
 and $z_2 = 1 - 2i$ find:

•
$$2z_1 + z_2$$

•
$$z_1 - iz_2$$

•
$$|2 + z_1|$$

•
$$\frac{z_1}{z_2}$$

•
$$\overline{2z_1+z_2}$$

(ii) Write the following in polar format

$$-2\sqrt{2}+2\sqrt{2}i$$

Question B

(a)
$$z = 6 + 2i$$
, where $i^2 = -1$.

(i) Show that
$$z - iz = 8 - 4i$$
.

(ii) Show that
$$|z|^2 + |iz|^2 = |z - iz|^2$$

(iii) The circle c passes through the points z, iz, and 0, as shown in the diagram below (not to scale). z and iz are endpoints of a diameter of the circle. Find the area of the circle c in terms of π .

(b) $(\sqrt{3} - i)^9$ can be written in the form a + ib, where $a, b \in \mathbb{Z}$ and $i^2 = -1$. Use de Moivre's Theorem to find the value of a and the value of b.

Question C

(a)
$$\frac{(4-2i)}{(2+4i)} = 0 + ki$$
, where $k \in \mathbb{Z}$, and $i^2 = -1$. Find the value of k .

- (b) Find $\sqrt{-5+12i}$. Give both of your answers in the form a+bi, where $a,b\in\mathbb{R}$.
- (c) Use De Moivre's theorem to find the **three** roots of $z^3 = -8$. Give each of your answers in the form a + bi, where $a, b \in \mathbb{R}$, and $i^2 = -1$.

Question D

(a) Find the two complex numbers z_1 and z_2 that satisfy the following simultaneous equations, where $i^2 = -1$:

$$iz_1 = -4 + 3i$$

 $3z_1 - z_2 = 11 + 17i$.

Write your answers in the form a + bi where $a, b \in \mathbb{Z}$.

- (b) The complex numbers 3 + 2i and 5 i are the first two terms of a **geometric** sequence.
 - (i) Find r, the common ratio of the sequence. Write your answer in the form a + bi where $a, b \in \mathbb{Z}$.

Hint for Geometric sequence $a_n = a_1 r^{n-1}$

(ii) Use de Moivre's Theorem to find T_9 , the ninth term of the sequence. Write your answer in the form a+bi, where $a,b\in\mathbb{Z}$.

Question E

(a) 3+2i is a root of $z^2+pz+q=0$, where $p,q\in\mathbb{R}$, and $i^2=-1$. Find the value of p and the value of q.

- (b) (i) $v = 2 2\sqrt{3}i$. Write v in the form $r(\cos \theta + i \sin \theta)$, where $r \in \mathbb{R}$ and $0 \le \theta \le 2\pi$.
 - (ii) Use your answer to **part** (b)(i) to find the **two** possible values of w, where $w^2 = v$. Give your answers in the form a + ib, where $a, b \in \mathbb{R}$.

Question F

$$z = \frac{4}{1 + \sqrt{3}i}$$
 is a complex number, where $i^2 = -1$.

- (a) Verify that z can be written as $1-\sqrt{3}i$.
- (b) Plot z on an Argand diagram and write z in polar form.
- (c) Use De Moivre's theorem to show that $z^{10} = -2^9 (1 \sqrt{3}i)$.

Question G

- (a) (-4+3i) is one root of the equation $az^2+bz+c=0$, where $a,b,c\in\mathbb{R}$, and $i^2=-1$. Write the other root.
- (b) Use De Moivre's Theorem to express $(1+i)^8$ in its simplest form.
- (c) (1+i) is a root of the equation $z^2 + (-2+i)z + 3 i = 0$. Find its other root in the form m + ni, where $m, n \in \mathbb{R}$, and $i^2 = -1$.

Question H

Prove using induction that $2^{3n-1} + 3$ is divisible by 7 for all $n \in \mathbb{N}$.

Question I

Prove using **induction** that, for all $n \in \mathbb{N}$, the sum of the first n square numbers can be found using the formula:

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$