Society of Actuaries
in Ireland
Q1
a) Express $\frac{2 \pi}{5}$ radians in degrees.

$$
\begin{gathered}
2 \pi \text { rads }=360^{\circ} \ldots . \text { divide both sides by } 5 \\
\frac{2 \pi}{5} \text { rads }=\frac{360^{\circ}}{5}=72^{\circ}
\end{gathered}
$$

b) Express 210° in radians.

$$
\begin{gathered}
360^{\circ}=2 \pi \text { rads } \ldots . \text { divide both sides by } 360 \\
1^{\circ}=\frac{2 \pi}{360} \text { rads }=\frac{\pi}{180} \text { rads } \ldots \text { multiply both sides by } 210 \\
210^{\circ}=\frac{210 \pi}{180} \text { rads }=\frac{7 \pi}{6} \text { rads } \approx 3.67 \text { rads }
\end{gathered}
$$

Q2

The diagram shows a circle c with centre O and radius 12 cm . Also shown is the minor sector $A B O$. The minor arc $[A B]$ subtends an angle of $\frac{5 \pi}{6}$ rads at the centre.
i (i) Label the diagram.

ii
(ii) Find the length of the minor arc [AB]

(ii) Find the area of the major sector ABO

$\theta=2 \pi-\frac{5 \pi}{6}=\frac{7 \pi}{6}$
$A=\frac{1}{2} \times 12^{2} \times \frac{7 \pi}{6}=84 \pi \mathrm{~cm}^{2}$

Qu

The diagram shows a triangle $A B C$.
Angle $A=20^{\circ}$ and angle $C=90^{\circ} A B=32 \mathrm{~m}$
Calculate the height $|\mathrm{BC}|$.
Solve the triangle.

You can then solve for $|\mathrm{AC}|$ using the Pythagoras Theorem.
And the sum of the three angels in a triangle = 180, so:
$\angle A B C=180-90-20=70$ degrees

Q4
If $\tan B=\sqrt{5} / 2$, find the value of $\sin B$ and $\cos B$.

$$
\begin{aligned}
x^{2} & =(\sqrt{5})^{2}+2^{2} \\
& =5+4=9 \\
x & =\sqrt{9}=3 \\
\sin B & =\frac{\sqrt{5}}{3} \quad \cos B=\frac{2}{3}
\end{aligned}
$$

Q5

1) Find $\cos 72^{\circ} 18^{\prime}$, correct to 4 decimal places.

Method 1
calculator

$$
\begin{aligned}
\cos & 72 \text { (01) } 1801 \pi) E \\
& =0.30403306 \\
& =0.3040 \text { to } 4 \mathrm{dp}
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& 72+\frac{18}{60}=72 \cdot 3 \\
& \cos (72 \cdot 3)=0.30403306 \\
&=0.3040 \text { to } 4 \mathrm{dp}
\end{aligned}
$$

2) If $\sin A=0.5216$, find A correct to the nearest second.

Method 1

$$
\begin{aligned}
& \sin ^{-1}(\sin A)=\sin ^{-1}(0.5216) \\
& A=5 \operatorname{sift} \sin 0 \cdot 5216 \\
& \\
& =31.43963765^{\circ} \\
& 0111
\end{aligned}=31^{\circ} 26^{\prime} 22.7^{\prime \prime} \quad \text { nearest second }
$$

Method 2

$$
\begin{aligned}
& 31.43963765^{\circ} \\
= & 31^{\circ}+0.43963765 \times 60^{\prime} \\
= & 31^{\circ}+26.37825916^{\prime} \\
= & 31^{\circ}+26^{\prime}+0.37825916 \times 60^{\prime \prime} \\
= & 31^{\circ} 26^{\prime} 22.6955^{\prime \prime}=31^{\circ} 26^{\prime} 23^{\prime \prime} \text { to nearest see }
\end{aligned}
$$

3) If $\sin A=4 / 7$, find A

$$
\begin{aligned}
& \sin ^{-1}(\sin A)=\sin ^{-1}\left(\frac{4}{7}\right) \\
& A=\operatorname{shift} \sin [\square \\
& A=\operatorname{sh}, f t \sin 4 \sigma 7 E \\
& A=34 \cdot 8^{\circ}
\end{aligned}
$$

4) Given $D=3 / 4 \pi$ Rads find $\operatorname{cosec} D$

Cosec is the reciprocal of Sine

$$
\operatorname{Cosec}\left(\frac{3 \pi}{4}\right)=\left(\operatorname{Sin}\left(\frac{3 \pi}{4}\right)\right)^{-1}=\frac{1}{\operatorname{Sin}\left(\frac{3 \pi}{4}\right)}
$$

Radian Mode
($\sqrt{ } \sin [6] 3 \pi \bar{F} 4[\square] x^{-1} E$

Q6
Make sketches of the following triangles:

- An Isosceles right-angled triangle with sides = 1 unit.
- An Equilateral triangle with sides $=2$ units. Draw a line to divide this triangle into two equal right-angled triangles.

Solve all three triangles and hence calculate $\operatorname{Sin}, \operatorname{Cos}$ and Tan of $30^{\circ}, 45^{\circ}$ and 60° in surd form.

$$
\begin{aligned}
\operatorname{Sin} 60^{\circ}=\frac{\sqrt{3}}{2} \quad & \operatorname{Tan} 60^{\circ} \\
& =\frac{\sqrt{3}}{1}=\sqrt{3}
\end{aligned}
$$

$$
\operatorname{Cos} 60^{\circ}=\frac{1}{2} \quad \operatorname{Tan} 30^{\circ}=\frac{1}{\sqrt{3}}
$$

$$
\begin{gathered}
60^{\circ}-2=30^{\circ} \\
y^{2}+1^{2}=2^{2} \\
y^{2}=4-1=3 \\
y= \\
y=\sqrt{3} \\
\\
\quad \sin 30^{\circ}=\frac{1}{2} \\
\quad \cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{gathered}
$$

Q7

1) Express in surd form, $\cos \left(-135^{\circ}\right)$.

Negative

$$
\theta=180-135=43^{\circ}
$$

ard quad \Rightarrow cos is negative

$$
\operatorname{Cos}\left(-135^{\circ}\right)=-\operatorname{Cos} 45^{\circ}=\frac{-1}{\sqrt{2}}
$$

check on calculator but question asked for surd form.
2) If $\sin x=-\sqrt{3} / 2$, find two values for x if $0^{\circ} \leq x \leq 360^{\circ}$.

Answer is negative Sin is negative in BrAt th Q $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ}$ (pg 13 of formula)

$$
\begin{aligned}
& 180+60 \\
&= 240^{\circ} \\
& 360-60 \\
&= 300^{\circ}
\end{aligned}
$$

Q8

In a triangle $F G H,|F G|=4 \mathrm{~cm},|F H|=3 \mathrm{~cm}$ and $|\angle F G H|=44^{\circ}$.
Find the possible values of $\angle F H G$.

Use the Sine Rule

Pair? Yes $=G$ and g. Second Pair? Have h but looking for H.

$$
\begin{gathered}
\frac{\operatorname{Sin} H}{h}=\frac{\operatorname{Sin} G}{g} \\
\operatorname{Sin} H=h \frac{\operatorname{Sin} G}{g} \\
H=\sin ^{-1}\left(h \frac{\operatorname{Sin} G}{g}\right) \\
H=\sin ^{-1}\left(4 \frac{\operatorname{Sin} 44}{3}\right) \\
H=67.851702^{\circ}
\end{gathered}
$$

or, $H=180^{\circ}-67.85^{\circ}=112^{\circ}$

Q9

Given that the area of this triangle is 6 cm 2 find the value of x

$$
\text { Area }=\frac{1}{2} x z \operatorname{Sin} Y
$$

$$
\begin{gathered}
6=\frac{1}{2} x(x+2) \operatorname{Sin} 150^{\circ} \\
12=x(x+2) \operatorname{Sin} 30^{\circ} \\
12=x(x+2) \frac{1}{2} \\
24=x(x+2) \\
x^{2}+2 x-24=0 \\
(x+6)(x-4)=0 \\
x=-6 \text { or } x=4
\end{gathered}
$$

Can't have a negative length,
therefore $x=4 \mathrm{~cm}$

Q10

A builder ropes off a triangular plot of ground, $P Q R$. The length of $|P Q|=$ 42 m and the length of $|P R|=50 \mathrm{~m} .|\angle Q P R|=72^{\circ}$. Calculate the length of rope needed by the builder. Give your answer correct to one decimal place.

Use the Cosine Rule
Pair? No SAS? Yes $=r P q \quad$ Looking for p

$$
\begin{gathered}
p^{2}=r^{2}+q^{2}-2 r q \cos P \\
p^{2}=42^{2}+50^{2}-2(42)(50) \cos 72 \\
p^{2}=1764+2500-(4200)(0.30901699)=2966.1286236 \\
p=54.4621760=54.5 \mathrm{~m} \text { correct to } 1 . \text { d.p. } \\
\text { Rope needed }=42+50+54.5=146.5 \mathrm{~m}
\end{gathered}
$$

Q11
An open rectangular box has dimensions 10 cm by 5 cm by 4 cm , as shown.

1) Find the length of the diagonal [GH].
2) Find the measure of the angle between GH and the base of the box.

Q12

The diagram represents a right pyramid. The base is a square of side $2 x$ cm . The length of each of the slant edges is $8 \sqrt{3} \mathrm{~cm}$. The height of the pyramid is $x \mathrm{~cm}$. Calculate the value of x.

Q13
A square is inscribed in a circle, as shown. If the area of the circle is π square units, find the area of the square.

$$
\begin{aligned}
A_{c} & =\pi r^{2}=\pi \\
& \Rightarrow r=1 \\
A_{s} & =2 r \times 2 r \\
& =4 r^{2} \\
& =4 \text { squats }
\end{aligned}
$$

Q14
A rectangular paving stone 3 m by 1 m rests against a vertical wall as shown. What is the height of the highest point of the stone above the ground? Give your answer in meters, correct to two decimal places.

Q15
Find all the solutions to the equation $\cos 3 x=\sqrt{3} / 2$, for $0^{\circ} \leq x \leq 360^{\circ}$.
$\operatorname{Cos} 30^{\circ}=\frac{\sqrt{3}}{2}$ from tables
Positive Cos in list and 4 th quadrants

Period $=360 / 3=120$
So, $x=10+120=130, x=130+120=250, x=110+120=230, x=230+120=350$

Q16

The area of the triangle shown is 15 square units.

- Find the value of x, correct to two decimal places.
- Using the Cosine Rule, find the value of y.

$$
\begin{gathered}
\text { Area }=\frac{1}{2} z x \operatorname{Sin} Y=\frac{1}{2}(3)(x) \operatorname{Sin}(70)=1.409538931179 x \\
\text { Area }=15=1.409538931179 x \\
x=\frac{15}{1.409538931179}=10.64178 \approx 10.64 \text { units } \\
y^{2}=x^{2}+z^{2}-2 x z \operatorname{Cos} Y \\
y^{2}=x^{2}+3^{2}-2 x(3) \operatorname{Cos} 70 \\
y^{2}=\left(\frac{15}{1.409538931179}\right)^{2}+3^{2}-2\left(\frac{15}{1.409538931179}\right)(3) \operatorname{Cos} 70 \\
y^{2}=113.2474331+9-21.83821406 \\
y^{2}=100.4092191 \\
y=\sqrt{100.4092191}=10.02044006 \approx 10.02
\end{gathered}
$$

The diagram shows a semi-circle standing on a diameter $[A C]$, and $[B D] \perp[A C]$. If $|A B|=x$ and $|B C|=1$ and $|B D|=y$, write y in terms of x.

$$
\begin{aligned}
& z^{2}=x^{2}+y^{2} \\
& y^{2}=x^{2}+2 x-z^{2} b \\
& y^{2}=x^{2}+2 x-\left(x^{2}+y^{2}\right) \\
& y^{2}=x^{2}+2 x-x^{2}-y^{2} \\
& 2 y^{2}=2 x \quad y=\sqrt{x}
\end{aligned}
$$

