Trigonometry 1 - Hints \& Tips

- Read the question carefully. θ
- Draw a diagram every time and label diagrams.
- Check the mode on your calculator - radians or degrees.
- Check for the format of your answer; e.g. in terms of π.
- Know how \& when to round your answer - do not round early.

See Log Tables page 13, 14, 15, 16

A radian is the measure of the angle at the centre of a circle subtended by an arc equal in length to the radius.

Right angled triangles page 16 of Tables

Pythagoras Theorem $h y p^{2}=o p p^{2}+a d j^{2}$

Silly Old Harry

Caught A Herring

Trawling Off America

Cosecant, Secant and Cotangent are the reciprocals of these and are given on page 13.
Sin, cos and tan for angles $>90^{\circ}$ page 13 of Tables

Sin, cos and tan have positive or negative signs in different quadrants of a circle.
θ is the angle with the positive x-axis.

Triangles with no right angle

If there is no right angle, Pythagoras and SOH CAH TOA can't be used - different formulae are used.

- a, b, c are the lengths of the sides
- A, B, C are the angles
- A opposite a
- B opposite b
- C opposite c

Sine rule:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Cosine rule:
$a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A$

Area of triangle:
$\frac{1}{2} a b \sin C$

Approach for Triangle questions:

- Start with the simplest formula
- Can Pythagoras be used (is it right angled)?
- Can SOH CAH TOA be used (is it right angled)?
- Can Sine rule be used?
- Can Cosine rule be used?

