Society of Actuaries

in Ireland
Algebra Hints and Tips

Simplifying an expression. What order should you follow?

To manipulate an equation, you can:

- Add or subtract the same number to/from both sides
- Multiply or divide both sides by the same number
- Square both sides, cube both sides, etc.
- Take the square root of both sides or cube root, etc

Simple Algebraic Rules

- Multiplying Terms
(a) $x(b c)=a b c$
(a) $x(b+c)=a b+a c$
$(a+b) x(c+d)=a(c+d)+b(c+d)$
- Anything to the power of 0 is 1 .
$A^{0}=1$,
$473^{0}=1$,
$\pi^{0}=1$,
$1,000,000^{0}=1$
- Inverse Powers
$X^{-1}=\frac{1}{X}, \quad Y^{-6}=\frac{1}{Y^{6}}$
- Indices
$Y^{3}+Y^{2}=Y \times Y \times Y+Y \times Y$
..... Can't be simplified
$\left(Y^{2}\right)^{3}=(Y \times Y)^{3}=(Y \times Y) \times(Y \times Y) \times(Y \times Y)=Y^{6}$
..... $2 \times 3=6$
$Y^{2} \times Y^{3}=(Y \times Y) \times(Y \times Y \times Y)=Y^{5}$
..... $2+3=5$
$\frac{Y^{3}}{Y^{2}}=\frac{K x X x Y}{X x K}=Y^{1}$
..... $3-2=1$

Algebra Hints and Tips

Cancelling terms in fractions:

$\frac{A}{A \times B}=\frac{1}{B}$

$$
\frac{\mathrm{X}^{2}+2 \mathrm{X}}{\mathrm{X}}=\frac{\mathrm{K}(\mathrm{X}+2)}{\mathrm{X}}=\frac{X+2}{1}=X+2
$$

$\frac{A}{A+B}=\frac{1}{B}$

$$
\frac{x+2}{x}=2
$$

Indices and Logarithms (From your Log Tables - Very Important!!!)

Indices $a^{p} a^{q}=a^{p+a}$	$a^{\frac{1}{q}}=\sqrt[q]{a}$
$\frac{a^{p}}{a^{q}}=a^{p-q}$	$a^{\frac{p}{q}}=\sqrt[q]{a^{p}}=(\sqrt[q]{a})^{p}$
$\left(a^{p}\right)^{q}=a^{p q}$	$(a b)^{p}=a^{p} b^{p}$
$a^{0}=1$	$\left(\frac{a}{b}\right)^{p}=\frac{a^{p}}{b^{p}}$
$a^{-p}=\frac{1}{a^{p}}$	

$\left\{\begin{array}{cc|}\hline \text { General rule of logs: Logarithms } \\ \log _{a}(x y)=\log _{a} x+\log _{a} y & \log _{a}\left(\frac{1}{x}\right)=-\log _{a} x \\ \log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y & \log _{a}\left(a^{x}\right)=x \\ \log _{a} x^{q}=q \log _{a} x & a^{\log _{a} x}=x \\ \log _{a} 1=0 & \log _{b} x=\frac{\log _{a} x}{\log _{a} b} \\ \hline\end{array}\right.$

Common mistake with Indices

$$
(A+B)^{2}=A^{2}+B^{2}>
$$

$$
\begin{aligned}
(A+B)^{2} \quad & =(A+B) \times(A+B) \\
& =A \times(A+B)+B \times(A+B) \\
& =A^{2}+A B+A B+B^{2} \\
& =A^{2}+2 A B+B^{2}
\end{aligned}
$$

Society of Actuaries
in Ireland

Algebra Hints and Tips
Common forms of algebraic equations you might need to factorise:

Take out common terms	Factorise by grouping
$a b+a d=a(b+d)$	$a b+a d+c b+c d=a(b+d)+c(b+d)$ $=(a+c)(b+d)$
$a^{2}-2 a b+b^{2}=(a-b)(a-b)=(a-b)^{2}$	$a^{2}-b^{2}=(a+b)(a-b)$
Difference of two cubes	Sum of two cubes
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$	$a^{3}+b^{3}=(a+b)\left(a^{2}-2 a b+b^{2}\right)$

Solving Quadratic Equations (i.e. finding the roots of a quadratic equation)
You can either:
A. Factorise \& let each factor $=0$; OR
B. Use the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$; OR
C. Complete the square (write in vertex form) and set $=0$

All three approaches will work. Some quadratics are easier to factorise than others, but you can always use the formula approach - even for simple quadratics.

Regarding the formula:

- If $b^{2}-4 a c>0$, the equation has two real distinct roots
- If $b^{2}-4 a c=0$, the equation has two equal real roots
- If $b^{2}-4 a c<0$, the equation has no real roots

Factor theorem

"If an algebraic expression is divided by one of its factors, then the remainder is zero. The expression $(x-k)$ is a factor of a polynomial $f(x)$ if the remainder when we divide $f(x)$ by $(x-$ k) is zero."

- If $f(k)=0$, then $(x-k)$ is a factor of $f(x)$
- If $(x-k)$ is a factor of $f(x)$, then $f(k)=0$

Society of Actuaries
in Ireland

Algebra Hints and Tips

Solving cubic equations ($a x^{3}+b x^{2}+c x+d=0$)

- Find the first root, k, by trial and error
- If $x=k$ is a root, then $(x-k)$ is a factor
- Divide $f(x)$ by $(x-k)$, which always gives a quadratic expression
- Find the factors of the quadratic and then find the roots of the quadratic

Inequalities

Always remember that multiplying or dividing both sides of an inequality by a negative number reverses the direction of the inequality symbol

Quadratic inequalities

Replace $>,<, \geq, \leq$ with $=$ to make an equation

- Solve the equation to find the roots -> these are called the critical values of the inequality \& the solution either will be between these critical values or outside these critical values
- Test a number between the critical values (often 0) in the original inequality

Two possibilities arise:

- If the inequality is true, then the solution lies between the critical values
- If the inequality is false, then the solution does not lie between the critical values
(Note: that if the inequality uses < or >, the critical values are not included in the solution set, whereas if the inequality uses \leq or \geq, the critical values are included in the solution set)

Modulus inequalities

If $|x| \leq a$, then $-a \leq x \leq a$
(Note: " $\bmod x$ " is the same as " $|x|$ ")
If $|x| \geq a$, then $x \leq-a$ or $x \geq a$

Society of Actuaries

in Ireland
Algebra Hints and Tips

Surds

Properties of surds...

$\sqrt{a b}=\sqrt{a} \sqrt{b}$
$\sqrt{\left(\frac{a}{b}\right)}=\frac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{a} \sqrt{a}=a$

To simplify surds...
Find the largest possible perfect square number greater than 1 that will divide evenly into the number under the square root.

Then use the first property above. E.g. $\sqrt{63}=\sqrt{(9 x 7)}=\sqrt{9} \times \sqrt{7}=3 \sqrt{7}$

Society of Actuaries
in Ireland

Algebra Hints and Tips

Lowest Common Denominator

When you want to sum (or subtract) two fractions, you need to find a common denominator. The easiest way is usually to multiply the two denominators (this will give you a common denominator, but it won't necessarily be the lowest one).
E.g.

$$
\frac{1}{7}+\frac{3}{5}
$$

Lowest Common denominator $=7 \times 5=35$
Now multiply so that you have the same denominator in each fraction:
$\frac{5}{5} \times \frac{1}{7}+\frac{3}{5} \times \frac{7}{7}$
$=\frac{5}{35}+\frac{21}{35}$

(effectively multiplying by 1)

$=\frac{26}{35}$

The same applies for algebraic fractions, e.g.

$$
\frac{x}{y}+\frac{2 x}{z}
$$

Lowest Common denominator $=y z$
$\frac{z}{z} \times \frac{x}{y}+\frac{2 x}{z} \times \frac{y}{y}$
$=\frac{z x}{z y}+\frac{2 x y}{z y}$
$=\frac{z x+2 x y}{z y}$

