Algebra 2 - Solutions

Warm Up Questions:

Question 1.

Let $f(x)=-x^{2}+12 x-27, x \in \mathbb{R}$.
(a) (i) Complete Table 1 below.

Table 1								
x	3	4	5	6	7	8	9	
$f(x)$	0	5	8	9	8	5	0	

Question 2. Solve for $\mathrm{x}: \frac{x+7}{3}+\frac{2}{\mathrm{x}}=4$
Multiply across:
$\Rightarrow \frac{(x+7)(x)(3)}{3}+\frac{2(x)(3)}{x}=4(\mathrm{x})(3)$
$\Rightarrow \mathrm{x}(\mathrm{x}+7)+2(3)=12 \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}+7 \mathrm{x}+6=12 \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}+7 \mathrm{x}-12 \mathrm{x}+6=0$
$\Rightarrow \mathrm{x}^{2}-5 \mathrm{x}+6=0$

$$
\begin{aligned}
& \Rightarrow(x-3)(x-2) \\
& \Rightarrow x=3, x=2
\end{aligned}
$$

Question 3. Express $\sqrt{48}-\sqrt{12}+\sqrt{27}$ in the form $a \sqrt{b}$

$$
\begin{aligned}
& =>\sqrt{16 \times 3}-\sqrt{4 \times 3}+\sqrt{9 \times 3} \\
& =>\sqrt{16} \sqrt{3}-\sqrt{4} \sqrt{3}+\sqrt{9} \sqrt{3} \\
& =>4 \sqrt{3}-2 \sqrt{3}+3 \sqrt{3} \\
& =>5 \sqrt{3}
\end{aligned}
$$

Question 4. Simplify:

$$
\begin{align*}
& (b+1)^{3}-(b-1)^{3} \\
(b+1)^{3} & =(b+1)(b+1)^{2} \\
& =(b+1)\left(b^{2}+2 b+1\right) \\
& =b\left(b^{2}+2 b+1\right)+1\left(b^{2}+2 b+1\right) \\
& =b^{3}+2 b^{2}+b+b^{2}+2 b+1 \\
& =b^{3}+3 b^{2}+3 b+1 \quad \ldots . .(1) \tag{1}\\
(b-1)^{3}= & (b-1)(b-1)^{2} \\
& =(b-1)\left(b^{2}-2 b+1\right)
\end{align*}
$$

Society of Actuaries

Algebra 2 - Solutions

$$
\begin{equation*}
=b^{3}-3 b^{2}+3 b-1 \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
(b+1)^{3}- & (b-1)^{3}=(1)-(2) \\
& =b^{3}+3 b^{2}+3 b+1-\left(b^{3}-3 b^{2}+3 b-1\right) \\
& =6 b^{2}+2
\end{aligned}
$$

Side note: It is useful to remember $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
Which you can use to check:

$$
\begin{aligned}
& (b+1)^{3}-(b-1)^{3}=b^{3}+3 b^{2}+3 b+1-\left(b^{3}-3 b^{2}+3 b-1\right) \\
& =6 b^{2}+2
\end{aligned}
$$

-b Formula

Question 5.

$$
\begin{aligned}
& 10 x^{2}+6 x-52=0 \\
& a=10 \quad c=-52 \\
& \Rightarrow \frac{-6+/-\sqrt{\left(6^{2}-4(10)(-52)\right)}}{2(10)} \\
& \Rightarrow \frac{-6+/-\sqrt{(36-(-2080)}}{20} \\
& \Rightarrow \frac{-6+/-\sqrt{(2116)}}{20} \\
& \Rightarrow \frac{-6+/-46}{20} \\
& \Rightarrow \frac{-6+46}{20}=\frac{40}{20}=2 \\
& X=2 \text { or } X=\frac{-13}{5}
\end{aligned} \quad \Rightarrow \frac{-6-46}{20}=\frac{-52}{20}=\frac{-13}{5}
$$

Question 6. 2011 Paper 1 Q1

(c) Solve the equation $x^{2}-2 \sqrt{3} x-9=0$, giving your answers in the form $a \sqrt{3}$, where $a \in \mathbb{Q}$.

$$
\begin{aligned}
x & =\frac{2 \sqrt{3} \pm \sqrt{(-2 \sqrt{3})^{2}-4(1)(-9)}}{2(1)}=\frac{2 \sqrt{3} \pm \sqrt{48}}{2} \\
& =\frac{2 \sqrt{3} \pm 4 \sqrt{3}}{2} \\
& =\sqrt{3} \pm 2 \sqrt{3} \\
x & =-\sqrt{3} \text { or } x=3 \sqrt{3}
\end{aligned}
$$

Algebra 2 - Solutions

Question 7. 2015 Paper 1 Q2 (25 marks)
Solve the equation $x^{3}-3 x^{2}-9 x+11=0$.
Write any irrational solution in the form $a+b \sqrt{c}$, where $a, b, c \in \mathbb{Z}$.
Solution:
$f(x)=x^{3}-3 x^{2}-9 x+11$
$f(1)=1^{3}-3(1)^{2}-9+11=0$
$\Rightarrow x=1$ is a solution.
$(x-1)$ is a factor

$x^{2}-2 x-11$
$x^{3}-3 x^{2}-9 x+11$

$$
\begin{aligned}
& \frac{x^{3}-x^{2}}{-2 x^{2}-9 x+11} \\
& \frac{-2 x^{2}+2 x}{-11 x+11} \\
& -11 x+11
\end{aligned}
$$

Hence, other factor is $x^{2}-2 x-11$
$x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-11)}}{2(1)}=\frac{2 \pm \sqrt{48}}{2}=\frac{2 \pm 4 \sqrt{3}}{2}=1 \pm 2 \sqrt{3}$
Solutions: $\{1,1+2 \sqrt{3}, 1-2 \sqrt{3}\}$

Algebra 2 - Solutions

Inequalities

Question 8. 2013 Paper 1 Q2
(a) Find the set of all real values of x for which $2 x^{2}+x-15 \geq 0$.
$2 x^{2}+x-15=0$
$\Rightarrow(2 x-5)(x+3)=0 \Rightarrow x=2 \frac{1}{2}$ or $x=-3$
$2 x^{2}+x-15 \geq 0$ for $\{x \mid x \leq-3\} \cup\left\{x \left\lvert\, x \geq 2 \frac{1}{2}\right.\right\}$

OR

$f(x)=2 x^{2}+x-15=(2 x-5)(x+3)$
$(2 x-5)(x+3)=0$
$\Rightarrow x=\frac{5}{2}$ or $x=-3$
(i): $x \geq-3$ and $x \geq \frac{5}{2} \Rightarrow x \geq \frac{5}{2}$
(ii): $x \leq-3$ and $x \leq \frac{5}{2} \Rightarrow x \leq-3$

Solution Set: $\quad\{x \mid x \leq-3\} \cup\left\{x \left\lvert\, x \geq \frac{5}{2}\right.\right\}$

Question 9. Solve the following inequality and graph the solution, $x \in R$:
$|3 x+4| \leq|x+2|$
$(|3 x+4|)^{2} \leq(|x+2|)^{2}$
$\Rightarrow 9 x^{2}+24 x+16 \leq x^{2}+4 x+4$
$\Rightarrow 8 x^{2}+20 x+12 \leq 0$
$\Rightarrow 2 x^{2}+5 x+3 \leq 0$

Solve $(2 x+3)(x+1)=0$
$\begin{array}{lll}\Rightarrow(2 x+3)=0 & \text { OR } & (x+1)=0 \\ \Rightarrow x=-3 / 2 & \text { OR } & x=-1\end{array}$

Society of Actuaries

Algebra 2 - Solutions

Consider $2 x^{2}+5 x+3$. This is a quadratic with a positive " a " (the x^{2} coefficient).
So it is a quadratic curve with a U shape.

So $2 x^{2}+5 x+3$ is less than 0 when:
$\Rightarrow \frac{-3}{2} \leq x \leq-1$

Question 10. 2018 Paper 1 Q1

(b) Solve the inequality $\frac{2 x-3}{x+2} \geq 3$, where $x \in \mathbb{R}$ and $x \neq-2$.

$$
\begin{array}{ll}
\frac{2 x-3}{x+2} \geq 3 \quad \times(x+2)^{2} \quad \begin{array}{l}
\text { <- We multiply across by }(x+2)^{2} \text { as it is always non- } \\
\text { negative }
\end{array}
\end{array}
$$

$$
(2 x-3)(x+2) \geq 3(x+2)^{2}
$$

$$
2 x^{2}+x-6 \geq 3 x^{2}+12 x+12
$$

$$
x^{2}+11 x+18 \leq 0
$$

$$
(x+2)(x+9) \leq 0
$$

$$
-9 \leq x<-2
$$

Algebra 2 - Solutions

Question 11. 2012 Paper 1 Q1
(b) Find the set of all real values of x for which $\frac{2 x-5}{x-3} \leq \frac{5}{2}$.

Multiply across by $2(x-3)^{2}$, which is non-negative:

$$
\begin{aligned}
2(x-3)(2 x-5) & \leq 5(x-3)^{2} \\
4 x^{2}-22 x+30 & \leq 5 x^{2}-30 x+45 \\
0 & \leq x^{2}-8 x+15 \\
0 & \leq(x-5)(x-3)
\end{aligned}
$$

$$
x \geq 5 \text { or } x<3 .
$$

or

$$
\begin{aligned}
& \frac{2 x-5}{x-3}-\frac{5}{2} \leq 0 \\
& \frac{2(2 x-5)-5(x-3)}{2(x-3)} \leq 0 \\
& \frac{-x+5}{2(x-3)} \leq 0 \\
& x \geq 5 \text { or } x<3 .
\end{aligned}
$$

Simultaneous Equations

Question 12.

Solve the simultaneous equations:

$$
\begin{array}{r}
a^{2}-a b+b^{2}=3 \\
a+2 b+1=0
\end{array}
$$

$$
a=-2 b-1
$$

$$
\begin{aligned}
(-2 b-1)^{2}+(2 b+1) b+b^{2} & =3 \\
7 b^{2}+5 b-2 & =0 \\
(7 b-2)(b+1) & =0 \\
b=\frac{2}{7} \quad \text { or } b & =-1 \\
a=\frac{-11}{7} \quad \text { or } a & =1
\end{aligned}
$$

Solution: $\left\{b=\frac{2}{7}\right.$ and $\left.a=\frac{-11}{7}\right\} \quad$ or $\{b=-1$ and $a=1\}$.

Question 13.

Algebra 2 - Solutions

(a) Solve the simultaneous equations.

$$
\begin{aligned}
2 x+3 y-z & =-4 \\
3 x+2 y+2 z & =14 \\
x-3 z & =-13
\end{aligned}
$$

Solution:

$$
\begin{array}{lll}
\text { (i) } & 2 x+3 y-z=-4 & \times(2) \\
\text { (ii) } & 3 x+2 y+2 z=14 & \times(-3)
\end{array}
$$

$$
\begin{aligned}
& 4 x+6 y-2 z=-8 \\
& -9 x-6 y-6 z=-42 \\
& -5 x-8 z=-50 \\
& \frac{\text { (iii) } \quad x-3 z=-13}{-5 x-8 z=-50} \times(5) \\
& \frac{5 x-15 z=-65}{-23 z=-115} \\
& z=5 \\
& \Rightarrow x=2 \\
& \Rightarrow y=-1 \quad\{2,-1,5\}
\end{aligned}
$$

Logs
Question 14. Solve $\log _{x} 8=3$

$$
\begin{gathered}
x^{3}=8 \\
x=2
\end{gathered}
$$

Question 15. Solve $32^{x-1}=28$ for x and give your answer to 2 decimal places
Solution is to take the natural log of both sides

$$
\begin{aligned}
& \ln \left(32^{x-1)}=\ln (28)\right. \\
& (x-1) \ln 32=\ln 28 \ldots . . U \operatorname{sing} \log \left(a^{b}\right)=b^{*} \log (a) \\
& x-1=\ln 28 / \ln 32 \\
& x=\ln 28 / \ln 32+1 \\
& x=1.96
\end{aligned}
$$

Question 16. 2016 P1 Q4 (10 marks):
Given $\log _{a} 2=p$ and $\log _{a} 3=q$, where $a>0$, write each of the following in terms of p and q :
(i) $\log _{a} \frac{8}{3}$

$$
\begin{aligned}
& p=\log _{\mathrm{a}} 2, \quad q=\log _{\mathrm{a}} 3 \\
& \log _{a} \frac{8}{3}=\log _{a} 8-\log _{a} 3 \\
& =\log _{a}(2)^{3}-\log _{a} 3 \\
& =3 \log _{\mathrm{a}} 2-\log _{\mathrm{a}} 3 \\
& =3 p-q
\end{aligned}
$$

(ii) $\log _{a} \frac{9 a^{2}}{16}$.

$$
\begin{gathered}
\log _{\mathrm{a}} \frac{9 a^{2}}{16}=\log _{\mathrm{a}}(3 a)^{2}-\log _{\mathrm{a}}(2)^{4} \\
=2 \log _{\mathrm{a}} 3+2 \log _{\mathrm{a}} a-4 \log _{\mathrm{a}} 2 \\
\quad=2 q+2(1)-4 p \\
\quad=2 q+2-4 p
\end{gathered}
$$

Question 17. 2014 P1 Q2

Given that $p=\log _{c} x$, express $\log _{c} \sqrt{x}+\log _{c}(c x)$ in terms of p.

We know that

$$
\log _{c} \sqrt{x}=\log _{c} x^{\frac{1}{2}}=\frac{1}{2} \log _{c} x=\frac{1}{2} p
$$

using the power law for logarithms.
Also,

$$
\log _{c}(c x)=\log _{c} c+\log _{c} x=\log _{c} c+p
$$

using the product rule for logarithms.
But $\log _{c} c=1$ since $c^{1}=c$. Therefore

$$
\log _{c} \sqrt{x}+\log _{c}(c x)=\frac{1}{2} p+1+p=\frac{3 p}{2}+1 .
$$

Algebra 2 - Solutions

Recent Questions

Question 18. 2023 P1 Q1
(a) Find the two values of $m \in \mathbb{R}$ for which $|5+3 m|=11$.
(a) Method 1:

$$
\begin{array}{ll}
5+3 m=11 & 5+3 m=-11 \\
3 m=6 & 3 m=-16 \\
m=2 & m=-\frac{16}{3}
\end{array}
$$

OR

Method 2:

$(5+3 m)^{2}=11^{2}$
$25+30 m+9 m^{2}=121$
$9 m^{2}+30 m-96=0$
$3 m^{2}+10 m-32=0$
$(3 m+16)(m-2)=0$
$m=-\frac{16}{3}, \quad m=2$
(b) For the real numbers h, j, and k :

$$
\frac{1}{h}=\frac{k}{j+k}
$$

Express k in terms of h and j.
(b) $j+k=h k$
$k-h k=-j$
$k(1-h)=-j$
$k=-\frac{j}{1-h}$ or $k=\frac{j}{h-1}$

Algebra 2 - Solutions

Question 19. 2023 P1 Q6
(a) f and g are two functions of $x \in \mathbb{R}$, where:

$$
\begin{aligned}
& f(x)=x+4 \\
& g(x)=x^{2}-2
\end{aligned}
$$

(i) Find the two values of x for which $f(x)=g(x)$.

(a)(i)	$x+4=x^{2}-2$ $x^{2}-x$ $(x-3)(\bar{x}+2)=0$ $x=3, \quad x=-2$

Additional Questions

Question 20.

(i) Let $\mathrm{x}=$ Stage number.

There are 4 times as many blue tiles than the Stage number
Blue tiles $=4 x$
There are 4 white tiles in every stage. This is a constant and remains 4 no matter what stage number we use.

The total number of green tiles is the square of the stage number.
Number of Green tiles $=x^{2}$
The total number of tiles (T) must be the green tiles + blue tiles + white tiles
$\mathrm{T}=\mathrm{x}^{2}+4 \mathrm{x}+4$
(ii) $x^{2}+4 x+4=324$

Factorise $(x+2)(x+2)=324$
$(x+2)^{2}=324$
$x+2=18$
$\mathrm{x}=16$
There are x^{2} green tiles therefore $16^{2}=256$ green tiles .
(iii) Mary's kitchen is square. Therefore the length of each side $=\sqrt{6.76}=2.6 \mathrm{~m}=260 \mathrm{~cm}$.

Society of Actuaries

in Ireland

Algebra 2 - Solutions

Each tile has sides of 20 cm each and $13 \times 20=260$. Therefore there are 13 tiles on each side or in each row.
In the first row there are two white tiles and the rest (13-2=11) are blue. Therefore this must be stage 11.

Green $=x^{2}=121$

Blue $=4 x=44$
White = 4
Check: The total number of tiles $=121+44+4=169$.

The area of each tile $=0.20 \times 0.20=0.04 \mathrm{~m}^{2}$. The total number of tiles needed $=6.76 \div 0.04=169$.

Question 21.

1)

200 m Race:

$$
\begin{array}{r}
y=a(b-x)^{c} \\
y=4.99087(42.5-23.8)^{1.81} \\
y=1000
\end{array}
$$

Javelin:

$$
\begin{gathered}
y=a(x-b)^{c} \\
y=15 \cdot 9803(58 \cdot 2-3 \cdot 8)^{1.04} \\
y=1020
\end{gathered}
$$

2)

$$
\begin{gathered}
y=a(x-b)^{c} \\
1295=15.9803(x-3.8)^{1.04} \\
81.0373=(x-3.8)^{1.04}=z^{1.04} \\
\log z=\frac{\log 81.0373}{1.04} \\
z=68.4343=(x-3.8) \\
x=72.2343=72.23 \mathrm{~m}
\end{gathered}
$$

3)

$$
\begin{gathered}
y=a(b-x)^{c} \\
1087=0 \cdot 11193(254-121 \cdot 84)^{\mathrm{c}} \\
\frac{1087}{0 \cdot 11193}=(132 \cdot 16)^{\mathrm{c}} \\
\log 9711 \cdot 426=c \log 132 \cdot 16 \\
c=\frac{\log 9711 \cdot 426}{\log 132 \cdot 16}=1.88
\end{gathered}
$$

