

Warm Up Questions:

Question 1.

- Let $f(x) = -x^2 + 12x 27, x \in \mathbb{R}$.
- (a) (i) Complete Table 1 below.

Table 1										
x	3	4	5	6	7	8	9			
f(x)	0	5	8	9	8	5	0			

Question 2.

Solve for x:
$$\frac{x+7}{3} + \frac{2}{x} = 4$$

Multiply across:

$$\Rightarrow \frac{(x+7)(x)(3)}{3} + \frac{2(x)(3)}{x} = 4(x)(3)$$
$$\Rightarrow x(x+7) + 2(3) = 12x$$
$$\Rightarrow x^2 + 7x + 6 = 12x$$
$$\Rightarrow x^2 + 7x - 12x + 6 = 0$$
$$\Rightarrow x^2 - 5x + 6 = 0$$

$$\Rightarrow (x - 3)(x - 2) \Rightarrow x = 3, x = 2$$

Question 3. Express $\sqrt{48} - \sqrt{12} + \sqrt{27}$ in the form $a\sqrt{b}$ => $\sqrt{16 x 3} - \sqrt{4 x 3} + \sqrt{9 x 3}$ => $\sqrt{16}\sqrt{3} - \sqrt{4}\sqrt{3} + \sqrt{9}\sqrt{3}$ => $4\sqrt{3} - 2\sqrt{3} + 3\sqrt{3}$ => $5\sqrt{3}$

Question 4. Simplify:

$$(b + 1)^3 - (b - 1)^3$$

 $(b + 1)^3 = (b + 1)(b + 1)^2$
 $= (b + 1)(b^2 + 2b + 1)$
 $= b(b^2 + 2b + 1) + 1(b^2 + 2b + 1)$
 $= b^3 + 2b^2 + b + b^2 + 2b + 1$
 $= b^3 + 3b^2 + 3b + 1$ (1)
 $(b - 1)^3 = (b - 1)(b - 1)^2$
 $= (b - 1)(b^2 - 2b + 1)$

$$= b^{3} - 3b^{2} + 3b - 1 \qquad \dots (2)$$
$$(b + 1)^{3} - (b - 1)^{3} = (1) - (2)$$
$$= b^{3} + 3b^{2} + 3b + 1 - (b^{3} - 3b^{2} + 3b - 1)$$
$$= 6b^{2} + 2$$

Side note: It is useful to remember $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

Which you can use to check:

 $(b + 1)^3 - (b - 1)^3 = b^3 + 3b^2 + 3b + 1 - (b^3 - 3b^2 + 3b - 1)$

 $= 6b^2 + 2$

-b Formula

Question 5.

$$10x^{2} + 6x - 52 = 0$$

$$a = 10 \qquad b = 6 \qquad c = -52$$

$$\Rightarrow \frac{-6 + / - \sqrt{(6^{2} - 4(10)(-52))}}{2(10)}$$

$$\Rightarrow \frac{-6 + / - \sqrt{(36 - (-2080))}}{20}$$

$$\Rightarrow \frac{-6 + / - \sqrt{(2116)}}{20}$$

$$\Rightarrow \frac{-6 + / - 46}{20}$$

$$\Rightarrow \frac{-6 + / - 46}{20} = \frac{40}{20} = 2$$

$$\Rightarrow \frac{-6 - 46}{20} = \frac{-52}{20} = \frac{-13}{5}$$

$$X = 2 \text{ or } X = \frac{-13}{5}$$

Question 6. <u>2011 Paper 1 Q1</u>

(c) Solve the equation $x^2 - 2\sqrt{3}x - 9 = 0$, giving your answers in the form $a\sqrt{3}$, where $a \in \mathbb{Q}$.

$$x = \frac{2\sqrt{3} \pm \sqrt{\left(-2\sqrt{3}\right)^2 - 4(1)(-9)}}{2(1)} = \frac{2\sqrt{3} \pm \sqrt{48}}{2}$$
$$= \frac{2\sqrt{3} \pm 4\sqrt{3}}{2}$$
$$= \sqrt{3} \pm 2\sqrt{3}$$
$$x = -\sqrt{3} \text{ or } x = 3\sqrt{3}$$

Question 7. 2015 Paper 1 Q2 (25 marks)

Solve the equation $x^3 - 3x^2 - 9x + 11 = 0$. Write any irrational solution in the form $a + b\sqrt{c}$, where $a, b, c \in \mathbb{Z}$. Solution:

 $f(x) = x^{3} - 3x^{2} - 9x + 11$ $f(1) = 1^{3} - 3(1)^{2} - 9 + 11 = 0$ ⇒ x = 1 is a solution. (x - 1) is a factor

$$\begin{array}{r} x^2 - 2x & -11 \\ \hline x - 1 & x^3 - 3x^2 - 9x + 11 \\ \hline x^3 - x^2 \\ \hline -2x^2 - 9x + 11 \\ \hline -2x^2 + 2x \\ \hline -11x + 11 \\ -11x + 11 \end{array}$$

Hence, other factor is $x^2 - 2x - 11$

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)} = \frac{2 \pm \sqrt{48}}{2} = \frac{2 \pm 4\sqrt{3}}{2} = 1 \pm 2\sqrt{3}$$

Solutions: $\{1, 1 + 2\sqrt{3}, 1 - 2\sqrt{3}\}$

Inequalities

Question 8. <u>2013 Paper 1 Q2</u>

(a) Find the set of all real values of x for which $2x^2 + x - 15 \ge 0$.

Question 9. Solve the following inequality and graph the solution, $x \in R$: $|3x+4| \le |x+2|$

$$(|3x + 4|)^{2} \le (|x+2|)^{2}$$

$$\Rightarrow 9x^{2} + 24x + 16 \le x^{2} + 4x + 4$$

$$\Rightarrow 8x^{2} + 20x + 12 \le 0$$

$$\Rightarrow 2x^{2} + 5x + 3 \le 0$$

Solve (2x + 3)(x + 1) = 0

 $\Rightarrow (2x+3) = 0 \qquad OR \qquad (x+1) = 0$ $\Rightarrow x = -3/2 \qquad OR \qquad x = -1$

Consider $2x^2 + 5x + 3$. This is a quadratic with a positive "a" (the x^2 coefficient).

So it is a quadratic curve with a U shape.

So $2x^2+5x+3$ is less than 0 when:

$$\Rightarrow \frac{-3}{2} \le x \le -1$$

Question 10. 2018 Paper 1 Q1

(b) Solve the inequality $\frac{2x-3}{x+2} \ge 3$, where $x \in \mathbb{R}$ and $x \neq -2$.

$$\frac{2x-3}{x+2} \ge 3 \qquad \qquad \times (x+2)^2$$

<- We multiply across by $(x + 2)^2$ as it is always nonnegative

$$(2x-3)(x+2) \ge 3(x+2)^{2}$$

$$2x^{2} + x - 6 \ge 3x^{2} + 12x + 12$$

$$x^{2} + 11x + 18 \le 0$$

$$(x+2)(x+9) \le 0$$

 $-9 \le x < -2$

Question 11. 2012 Paper 1 Q1

(b) Find the set of all real values of x for which $\frac{2x-5}{x-3} \le \frac{5}{2}$.

Multiply across by $2(x-3)^2$, which is non-negative: $2(x-3)(2x-5) \le 5(x-3)^2$ $4x^2 - 22x + 30 \le 5x^2 - 30x + 45$ $0 \le x^2 - 8x + 15$ $0 \le (x-5)(x-3)$ $x \ge 5$ or x < 3.

or

					_
2x-5 5		x < 3	3 < x < 5	x > 5	
$\frac{1}{x-3} - \frac{1}{2} \le 0$	-x+5	+	+	-	
2(2x-5)-5(x-3)	x-3	-	+	+	
$\frac{2(2x-3)}{2(x-3)} \le 0$	$\frac{-x+5}{2(x-3)}$	_	+	_	
$\frac{-x+3}{2(x-3)} \le 0$					-
$x \ge 5$ or $x < 3$.					

Simultaneous Equations

Question 12.

Solve the simultaneous equations:

$$a^2 - ab + b^2 = 3$$
$$a + 2b + 1 = 0$$

$$a = -2b - 1$$

$$(-2b - 1)^{2} + (2b + 1)b + b^{2} = 3$$

$$7b^{2} + 5b - 2 = 0$$

$$(7b - 2)(b + 1) = 0$$

$$b = \frac{2}{7} \text{ or } b = -1$$

$$a = \frac{-11}{7} \text{ or } a = 1$$
Solution: $\{b = \frac{2}{7} \text{ and } a = \frac{-11}{7}\}$ or $\{b = -1 \text{ and } a = 1\}.$

Question 13.

(a) Solve the simultaneous equations.

$$2x + 3y - z = -43x + 2y + 2z = 14x - 3z = -13$$

Solution:

(i)
$$2x + 3y - z = -4$$
 × (2)
(ii) $3x + 2y + 2z = 14$ × (-3)

$$4x + 6y - 2z = -8$$

$$-9x - 6y - 6z = -42$$

$$-5x - 8z = -50$$

$$(iii) \quad x - 3z = -13 \quad \times (5)$$

$$-5x - 8z = -50$$

$$5x - 15z = -65$$

$$-23z = -115$$

$$z = 5$$

$$\Rightarrow x = 2$$

$$\Rightarrow y = -1 \qquad \{2, -1, 5\}$$

Logs

Question 14. Solve $log_x 8 = 3$ $x^3 = 8$ x = 2

Question 15. Solve $32^{x-1} = 28$ for x and give your answer to 2 decimal places Solution is to take the natural log of both sides

 $ln(32^{x-1}) = ln(28)$ (x-1)ln32 = ln28 Using log(a^b) = b * log (a) x-1 = ln28/ln32 x = ln28/ln32 + 1 x = 1.96

Question 16. 2016 P1 Q4 (10 marks):

Given $\log_a 2 = p$ and $\log_a 3 = q$, where a > 0, write each of the following in terms of p and q:

(i) $\log_a \frac{8}{3}$

Society of Actuaries in Ireland

Algebra 2 – Solutions

$$p = \log_a 2 , \qquad q = \log_a 3$$
$$\log_a \frac{8}{3} = \log_a 8 - \log_a 3$$
$$= \log_a (2)^3 - \log_a 3$$
$$= 3 \log_a 2 - \log_a 3$$
$$= 3p - q$$

(ii)
$$\log_a \frac{9a^2}{16}$$
.

$$\log_{a} \frac{9a^{2}}{16} = \log_{a}(3a)^{2} - \log_{a}(2)^{4}$$
$$= 2\log_{a} 3 + 2\log_{a} a - 4\log_{a} 2$$
$$= 2q + 2(1) - 4p$$
$$= 2q + 2 - 4p$$

Question 17. 2014 P1 Q2

Given that $p = \log_c x$, express $\log_c \sqrt{x} + \log_c(cx)$ in terms of p.

We know that

$$\log_c \sqrt{x} = \log_c x^{\frac{1}{2}} = \frac{1}{2}\log_c x = \frac{1}{2}p$$

using the power law for logarithms. Also,

$$\log_c(cx) = \log_c c + \log_c x = \log_c c + p$$

using the product rule for logarithms. But $\log_c c = 1$ since $c^1 = c$. Therefore

$$\log_c \sqrt{x} + \log_c(cx) = \frac{1}{2}p + 1 + p = \frac{3p}{2} + 1.$$

Recent Questions

- Question 18. 2023 P1 Q1
 - (a) Find the two values of $m \in \mathbb{R}$ for which |5+3m| = 11.

(a) Method 1:

(a) Method 1: $5 + 3m = 11 \qquad 5 + 3m = -11$ $3m = 6 \qquad 3m = -16$ $m = 2 \qquad m = -\frac{16}{3}$ ORMethod 2: $<math>(5 + 3m)^2 = 11^2$ $25 + 30m + 9m^2 = 121$ $9m^2 + 30m - 96 = 0$ $3m^2 + 10m - 32 = 0$ (3m + 16)(m - 2) = 0 $m = -\frac{16}{3}, m = 2$

(b) For the real numbers *h*, *j*, and *k*:

$$\frac{1}{h} = \frac{k}{j+k}$$

Express k in terms of h and j.

(b)
$$j + k = hk$$

 $k - hk = -j$
 $k(1 - h) = -j$
 $k = -\frac{j}{1-h}$ or $k = \frac{j}{h-1}$

Question 19. 2023 P1 Q6

(a) f and g are two functions of $x \in \mathbb{R}$, where:

$$f(x) = x + 4$$
$$g(x) = x^2 - 2$$

(i) Find the two values of x for which f(x) = g(x).

(a)(i)
$$x + 4 = x^2 - 2$$

 $x^2 - x = 0$
 $(x - 3)(x + 2) = 0$
 $x = 3, \quad x = -2$

Additional Questions

Question 20.

(i) Let x = Stage number.

There are 4 times as many blue tiles than the Stage number

Blue tiles = 4x

There are 4 white tiles in every stage. This is a constant and remains 4 no matter what stage number we use.

The total number of green tiles is the square of the stage number.

Number of Green tiles = x^2

The total number of tiles (T) must be the green tiles + blue tiles + white tiles

 $T = x^2 + 4x + 4$

(ii) $x^2 + 4x + 4 = 324$

Factorise (x+2)(x+2)=324

(x+2)²=324

x+2=18

x=16

There are x^2 green tiles therefore $16^2 = 256$ green tiles.

(iii) Mary's kitchen is square. Therefore the length of each side = $\sqrt{6.76} = 2.6$ m = 260 cm.

Each tile has sides of 20 cm each and $13 \times 20 = 260$. Therefore there are 13 tiles on each side or in each row.

In the first row there are two white tiles and the rest (13-2=11) are blue. Therefore this must be stage 11.

Green = x²=121

Blue =4x =44

White = 4

Check: The total number of tiles = 121+44+4=169.

The area of each tile = $0.20 \times 0.20 = 0.04 \text{ m}^2$. The total number of tiles needed = $6.76 \div 0.04 = 169$.

Question 21.

1) 200 m Race: $y = a(b - x)^c$ $y = 4.99087(42.5 - 23.8)^{1.8}$

$$4.99087(42.5 - 23.8)^{1.81}$$

 $y = 1000$

Javelin:

$$y = a(x - b)^{c}$$

y = 15.9803(58.2 - 3.8)^{1.04}
y = 1020

2)

$$y = a(x - b)^{c}$$

$$1295 = 15 \cdot 9803(x - 3 \cdot 8)^{1 \cdot 04}$$

$$81 \cdot 0373 = (x - 3 \cdot 8)^{1 \cdot 04} = z^{1 \cdot 04}$$

$$\log z = \frac{\log 81 \cdot 0373}{1 \cdot 04}$$

$$z = 68 \cdot 4343 = (x - 3 \cdot 8)$$

$$x = 72 \cdot 2343 = 72 \cdot 23 \text{ m}$$

3)

$$y = a(b - x)^{c}$$

$$1087 = 0.11193(254 - 121.84)^{c}$$

$$\frac{1087}{0.11193} = (132.16)^{c}$$

$$\log 9711.426 = c \log 132.16$$

$$c = \frac{\log 9711.426}{\log 132.16} = 1.88$$