Question 1
(i) Solve for x :

$$
2(4-3 x)+12=7 x-5(2 x-7)
$$

$8-6 x+12=7 x-10 x+35$
$-15=3 x$
$x=-5$
(ii) Verify your answer to (i) above.
$x=-5$
$2(4-(-15))+12$
$38+12$

$$
\begin{aligned}
& 7(-5)-5(-10-7) \\
& -35+85 \\
& 50
\end{aligned}
$$

50
[50 $=50]$

Question 2

Solve the simultaneous equations:

$$
\begin{aligned}
x+y & =7 \\
x^{2}+y^{2} & =25 .
\end{aligned}
$$

$$
\begin{aligned}
& x=7-y \\
& (7-y)^{2}+y^{2}=25 \\
& y^{2}-7 y+12=0 \\
& (y-4)(y-3)=0 \\
& y=4 \quad y=3 \\
& x=7-4 \quad x=7-3 \\
& x=3
\end{aligned} \quad x=4, ~ \begin{array}{ll}
(3,4) & (4,3)
\end{array}
$$

Question 3

Simplify $\frac{x^{2}-x y}{x^{2}-y^{2}}$.
Factorise the numerator (the top line of the equation) and denominator (bottom line of the equation- difference of two squares)

$$
\begin{gathered}
\frac{x(x-y)}{(x+y)(x-y)} \\
\frac{x(x-y)}{(x+y)(x-y)} \\
=\frac{x}{(x+y)}
\end{gathered}
$$

Question 4

Express the following as a single fraction in its simplest form:

$$
\frac{6 y}{x(x+4 y)}-\frac{3}{2 x}
$$

Step 1:
Find the common denominator by multiplying the bottom lines:
$2 x * x(x+4 y)=2 x^{2}(x+4 y)$
So $2 x^{2}(x+4 y)$ is our common denominator

Step 2:

Find the numerator by cross multiplying (top lines by bottom lines):

$$
\begin{aligned}
6 y * 2 x-3 * x(x+4 y) & =12 x y-3^{*}\left(x^{2}+4 x y\right) \\
& =12 x y-3 x^{2}-12 x y \\
& =-3 x^{2}
\end{aligned}
$$

So $-3 x^{2}$ is our numerator

Step 3:

The answer is the numerator divided by the denominator:

$$
\begin{aligned}
\frac{6 y}{x(x+4 y)}-\frac{3}{2 x} & =\frac{\text { Numerator }}{\text { Denominator }} \\
& =\frac{-3 x^{2}}{2 x^{2}(x+4 y)} \\
& =\frac{-3}{2(x+4 y)} \\
& =\frac{-3}{2 x+8 y}
\end{aligned}
$$

Algebra 1 - Solutions

Question 5

Solve the simultaneous equations:

$$
\begin{aligned}
x^{2}+x y+2 y^{2} & =4 & & \text { Equation (1) } \\
2 x+3 y & =-1 . & & \text { Equation (2) Line }
\end{aligned}
$$

Find x in terms of y using the linear equation; Equation (2) $2 x+3 y=-1$

$$
x=\frac{-3 y-1}{2}
$$

Substitute $x=\frac{-3 y-1}{2}$ into Equation (1)

$$
\left(\frac{-3 y-1}{2}\right)^{2}+\left(\frac{-3 y-1}{2}\right) y+2 y^{2}=4
$$

Multiply across by 4

$$
(-3 y-1)^{2}+(-3 y-1) 2 y+8 y^{2}=16
$$

Expand the bracket and take the 16 over to the left hand side

$$
9 y^{2}+6 y+1-6 y^{2}-2 y+8 y^{2}-16=0
$$

Group terms together

$$
\begin{gathered}
11 y^{2}+4 y-15=0 \\
(11 y+15)(y-1)=0 \\
y=\frac{-15}{11} \text { or } y=1
\end{gathered}
$$

Substitute $y=\frac{-15}{11}$ or $y=1$ into Equation (2) to solve for x

$$
\begin{gathered}
2 x+3\left(\frac{-15}{11}\right)=-1 \\
2 x+\left(\frac{-45}{11}\right)=-1 \\
2 x=-1+\frac{45}{11} \\
x=\frac{17}{11} \\
\text { OR } \\
2 x+3(1)=-1 \\
2 x+3=-1 \\
2 x=-4
\end{gathered}
$$

Society of Actuaries
in Ireland

Algebra 1 - Solutions

$$
x=-2
$$

Give the answer matching the appropriate x and y values:
Answer $=\left(\frac{17}{11}, \frac{-15}{11}\right)$ and $(-2,1)$

Question 6

Express the following as a single fraction in its simplest form:

$$
\frac{x^{2}+4}{x^{2}-4}-\frac{x}{x+2}
$$

Hint: $x^{2}-4$ is the difference between two squares i.e. $(x)^{2}-(2)^{2}=(x+2)(x-2)$
Step 1:
Find the common denominator by multiplying the bottom lines:
So $\left(x^{2}-4\right)(x+2)$ is our common denominator
Step 2:
Find the numerator by cross multiplying (top lines by bottom lines):
$\left(x^{2}+4\right)(x+2)-x\left(x^{2}-4\right)=(x+2) *\left[\left(x^{2}+4\right)-x(x-2)\right] \quad$.... because : $x^{2}-4=(x+2)(x-2)$
So $(x+2) *\left[\left(x^{2}+4\right)-x(x-2)\right]$ is our numerator
Step 3:
The answer is the numerator divided by the denominator:

$$
\begin{aligned}
\frac{x^{2}+4}{x^{2}-4}-\frac{x}{x+2} & =\frac{\text { Numerator }}{\text { Denominator }} \\
& =\frac{(x+2) *\left[\left(x^{2}+4\right)-x(x-2)\right]}{\left(x^{2}-4\right)(x+2)} \\
& =\frac{\left(x^{2}+4\right)-x(x-2)}{\left(x^{2}-4\right)} \quad \ldots(x+2) \text { cancels } \\
& =\frac{\left.\left(x^{2}+4\right)-x^{2}+2 x\right)}{\left(x^{2}-4\right)} \\
& =\frac{2 x+4}{\left(x^{2}-4\right)} \\
& =\frac{2(x+2)}{(x+2)(x-2)} \quad \ldots \text { difference of two squares } \\
& =\frac{2}{(x-2)}
\end{aligned}
$$

Question 7
Find the range of values of x for which $|x-4| \geq 2$, where $x \in \mathbb{R}$.

Method 1:

Expand the bracket
Take the 4 to the left hand side
Solve for the roots of the equation

$$
\begin{aligned}
x^{2}-8 x+16 & \geq 4 \\
x^{2}-8 x+12 & \geq 0 \\
(x-2)(x-6) & \geq 0 \\
x & =2 \\
x & =6
\end{aligned}
$$

Answer

$$
x \leq 2 \text { or } x \geq 6
$$

Method 2:

Split into 2 separate equations:

$$
+(x-4) \geq 2 \text { or }-(x-4) \geq 2
$$

Solve each equation separately:

$$
\begin{gathered}
x-4 \geq 2 \\
x-4+4 \geq 2+4 \\
x \geq 6
\end{gathered}
$$

OR

$$
\begin{gathered}
-(x-4) \geq 2 \\
+(x-4) \leq-2 \\
x-4+4 \leq-2+4 \\
x \leq 2
\end{gathered}
$$

Question 8

Find the set of all real values of x for which $2 x^{2}+x-15 \geq 0$.
Step 1:
For inequalities, first set the equation $=0$ and solve.
$2 x^{2}+x-15=0$
$(2 x-5)(x+3)=0$
$2 x-5=0 \quad x+3=0$
$x=2.5 \quad x=-3$

Step 2:

Then look at the sign in the inequality in the question.
If the sign is ≤ 0 we are "between the posts" which means the answer will be in the format of number $\leq x \leq$ number e.g. $-3 \leq x \leq 2.5$
If the sign is ≥ 0 we are "outside the posts" which means the answer will be in the format of

Algebra 1 - Solutions

$x \leq$ number and $x \geq$ number e.g. $x \leq-3$ and $x \geq 2.5$

Step 3:

Therefore in this case the answer is
$x \leq-3$ and $x \geq 2.5$ (You can sub in values to the original question to check if your answer is correct!)

Question 9

$x=\sqrt{x+6}$
$\Rightarrow x^{2}=x+6$
$\Rightarrow x^{2}-x-6=0$
$\Rightarrow(x+2)(x-3)=0$
$\Rightarrow x=-2, \quad x=3$
$x=-2:-2 \neq \sqrt{-2+6}=\sqrt{4}=2 \boldsymbol{X}$
$x=3: 3=\sqrt{3+6}=\sqrt{9}=3$,

Question 10

Solve the following for x, y and z .

$$
\begin{aligned}
& x+2 y-z=1 \\
& 2 x+y+z=4 \\
& x+2 y+z=2
\end{aligned}
$$

Solution:
Step 1:
Number each equation

$$
\begin{equation*}
x+2 y-z=1 \tag{1}
\end{equation*}
$$

(1)
$2 x+y+z=4$
$x+2 y+z=2$
Step 2:
Add two equations together to find equations (4) and (5):

$$
\begin{align*}
& x+2 y-z=1 \\
& x+2 y+z=2 \tag{1}\\
& \hline 2 x+4 y=3 \\
& \\
& x+2 y-z=1 \\
& 2 x+y+z=4 \\
& \hline 3 x+3 y=5
\end{align*}
$$

Step 3:

Solve equations (4) and (5):

$$
\begin{align*}
& 2 x+4 y=3 \tag{4}\\
& 3 x+3 y=5 \tag{5}\\
& 6 x+12 y=9 \tag{5}\\
& 6 x+6 y=10 \\
& 6 x+12 y=9 \tag{4}\\
& -6 x-6 y=-10 \tag{5}\\
& 6 y=-1 \\
& \text { (4) }(x 3)
\end{align*}
$$

Algebra 1 - Solutions

$$
\begin{array}{rlr}
y= & -1 / 6 & \\
2 x+4 y=3 & \text { (equation 4) } \\
2 x+4(-1 / 6)=3 & \\
x \quad=11 / 6 & \\
x+2 y-z=1 & \text { (Equation 1) } \\
(11 / 6)+2(-1 / 6)-z=1 & \\
z=1 / 2 &
\end{array}
$$

(You can sub in values to the original question to check if your answer is correct!)

Question 11

Solve the equation

$$
|4 x-3|>5
$$

Solution 2:

Step 1:
Set the equation = instead of less than/greater than and solve
$|4 x-3|=5$
This could mean that
$4 \mathrm{x}-3=5$
or

$$
\begin{aligned}
& 4 x-3=-5 \\
& 4 x=-5+3 \\
& 4 x=-2 \\
& x=-1 / 2
\end{aligned}
$$

Step 2:
Is the answer "between the roots" or "outside the roots"?
In this question the sign is $>$ so the answer is outside the roots. So the answer is:
$x>2$ and $x<-1 / 2$

Question 12

Step 1:
Set the equation $=$ instead of less than/greater than and solve

$$
|3 x+2|<4
$$

This could mean that
$3 x+2=4$
$3 x=4-2$
$3 x=2$
$3 x+2=-4$
$3 x=-4-2$
$x=2 / 3$
$3 x=-6$
$x=-2$

Step 2:
Is the answer "between the roots" or "outside the roots"?
In this question the sign is < so the answer is between the roots. So the answer is:

$$
-2<x<2 / 3
$$

Step 3:
Is the answer between the roots or outside the roots?
(Note: that $x=-2$ and $x=2 / 3$ should not be included on the number in the shaded region as inequality does not include equals, it's just less than)

Algebra 1 - Solutions

This answer is between the roots so on a graph this looks like:

Question 13

Step 1:

Set the equation $=0$

$$
f(x)=2 x^{3}-4 x^{2}-22 x+24=0
$$

Step 2:
To find x, try a few values of x and see if they give you zero.
Try $x=0$ first:
$f(0)=2 * 0-4 * 0-22 * 0+24$ $=24 \neq 0$
This is not equal to zero so $\mathrm{x}=0$ is not a solution (or "root").
Try $\mathrm{x}=1$:
$f(1)=2 * 1-4 * 1-22 * 1+24$

$$
=0!
$$

This is equal to zero so $\mathbf{x = 1}$ is a solution (or "root") which means that ($\mathbf{x - 1}$) is a factor.

Step 3:

Divide the equation by the factor you just found.

$$
\begin{gathered}
2 x^{2}-2 x-24 \\
(x-1) \sqrt{2 x^{3}-4 x^{2}-22 x+24} \\
2 x^{3}-2 x^{2} \\
-2 x^{2}-22 x+24 \\
-2 x^{2}+2 x \\
-24 x+24 \\
-24 x+24
\end{gathered}
$$

Step 4:

Algebra 1 - Solutions

Factorise fully.
$2 x^{3}-4 x^{2}-22 x+24=(x-1)\left(2 x^{2}-2 x-24\right)$
$=(x-1)(2 x+6)(x-4)$
Step 5:
Pull out the final answers, also called "roots".
$x-1=0$
$\mathrm{x}=1$
$2 x+6=0$
$2 x=-6$
$x=-3$
$x-4=0$
$x=4$
$x=-3,1,4 \quad$ are the solutions

Step 6:

The graph always looks something like this:

So just make sure it crosses the x axis at your solutions $x=-3,1,4$:

Question 14

(ia)

$$
\begin{aligned}
& x=-3, \quad x=-1, \quad x=2 \\
& H(x)-(x+3)(x+1 H-2)-x^{3}+2 x^{2}-5 x-6
\end{aligned}
$$

CMR

$$
\begin{aligned}
& \vec{H}(x)=x^{3}+2 x^{3}-5 x-6 \\
& f(-3)=-27+18+15-6-0 \Rightarrow(x+3) \text { be factor } \\
& A(-1)-1+2+5-\sigma-0 \Rightarrow 4 x+1) \text { is in factor } \\
& f(2)-8+5-10-6-0 \Rightarrow(x-2) \text { is a fuctor } \\
& f(x)=(x+3) x+1 M x-2)-x^{n}+2 x^{2}-5 x-6
\end{aligned}
$$

(b) (b)

$$
\begin{aligned}
& \overrightarrow{(x)}-(x) \\
& x^{3}+2 x^{2}-3 x-6=-2 x-6 \\
& \Rightarrow x^{2}+2 x^{2}-3 x=0 \\
& \left.\Rightarrow x^{2}+2 x-3\right)-0 \\
& \Rightarrow x(x-1(x+3)=0 \\
& \Rightarrow x=4 \quad x=1, \quad x=-3 \\
& \Rightarrow y=-6 \quad y=-8, y=0
\end{aligned}
$$

Point: $i=3,0,4,4,61,(1,=4)$
(ii)

$$
\begin{aligned}
& g(x)=-2 x-6 \\
& g(-3)=-2(-3)-6=6-6=0-4-3,0) \\
& g(4)=-204-6=-6=(0,-6)
\end{aligned}
$$

Question 15

a (i)

$$
\begin{aligned}
& f(x)=x^{3}+k x^{2}-4 x-12 \\
& \begin{aligned}
&(x+3) \text { is factor } \Rightarrow f(-3)=0 \\
& f(-3)=(-3)^{3}+k(-3)^{2}-4(-3)-12=0 \\
&-27+9 k+12-12=0 \\
& 9 k=27 \Rightarrow k=3
\end{aligned}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{3}{1+x^{p}}+\frac{3}{1+x^{-p}} & =\frac{3\left(1+x^{-p}\right)+3\left(1+x^{p}\right)}{\left(1+x^{p}\right)\left(1+x^{-p}\right)} \\
& =\frac{3\left(1+x^{-p}+1+x^{p}\right)}{1+x^{p}+x^{-p}+x^{0}} \\
& =\frac{3\left(2+x^{-p}+x^{p}\right)}{\left(2+x^{-p}+x^{p}\right)} \\
& =3
\end{aligned}
$$

Question 16

(i) Let $\mathrm{x}=$ Stage number.

There are 4 times as many blue tiles than the Stage number
Blue tiles $=4 x$
There are 4 white tiles in every stage. This is a constant and remains 4 no matter what stage number we use.

The total number of green tiles is the square of the stage number.
Number of Green tiles $=x^{2}$
The total number of tiles (T) must be the green tiles + blue tiles + white tiles
$\mathrm{T}=\mathrm{x}^{2}+4 \mathrm{x}+4$
(ii) $x^{2}+4 x+4=324$

Factorise $(x+2)(x+2)=324$
$(x+2)^{2}=324$
$x+2=18$
$\mathrm{x}=16$
There are x^{2} green tiles therefore $16^{2}=256$ green tiles .
(iii) Mary's kitchen is square. Therefore the length of each side $=\sqrt{6.76}=2.6 \mathrm{~m}=260 \mathrm{~cm}$.

Each tile has sides of 20 cm each and $13 \times 20=260$. Therefore there are 13 tiles on each side or in each row.
In the first row there are two white tiles and the rest $(13-2=11)$ are blue. Therefore this must be stage 11.

Algebra 1 - Solutions

Green $=x^{2}=121$
Blue $=4 x=44$
White $=4$

Check: The total number of tiles $=121+44+4=169$.
The area of each tile $=0.20 \times 0.20=0.04 \mathrm{~m}^{2}$. The total number of tiles needed $=6.76 \div 0.04=169$.

