

Q1 a) Express $\frac{2\pi}{5}$ radians in degrees.

$$2\pi rads = 360^{\circ} \dots divide both sides by 5$$

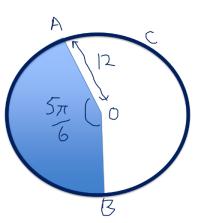
$$\frac{2\pi}{5}rads = \frac{360^{\circ}}{5} = 72^{\circ}$$

b) Express 210° in radians.

$$360^{\circ} = 2\pi \ rads \dots \ divide \ both \ sides \ by \ 360$$
$$1^{\circ} = \frac{2\pi}{360} rads = \frac{\pi}{180} rads \dots multiply \ both \ sides \ by \ 210$$
$$210^{\circ} = \ \frac{210\pi}{180} rads = \frac{7\pi}{6} rads \approx 3.67 \ rads$$

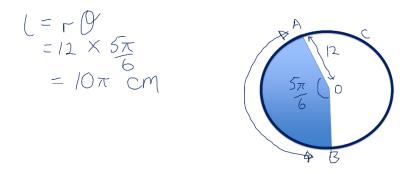
Q2

The diagram shows a circle c with centre O and radius 12cm. Also shown is the minor sector ABO. The minor arc [AB] subtends an angle of $\frac{5\pi}{6}$ rads at the centre.



i (i) Label the diagram.

ii (ii) Find the length of the minor arc [AB]



(ii) Find the area of the major sector ABO

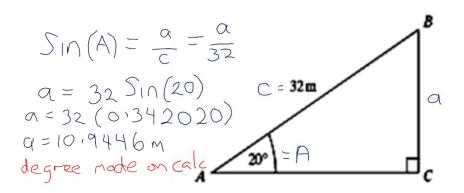
$$A = \frac{1}{2}r^{2}O$$

$$O = 2\pi - 5\pi = \frac{7\pi}{6}$$

$$A = \frac{1}{2} \times 1^{2} \times 7\pi = 84\pi \text{ cm}^{2}$$

Q3

The diagram shows a triangle ABC. Angle $A = 20^{\circ}$ and angle $C = 90^{\circ} AB = 32m$ Calculate the height |BC|. Solve the triangle.



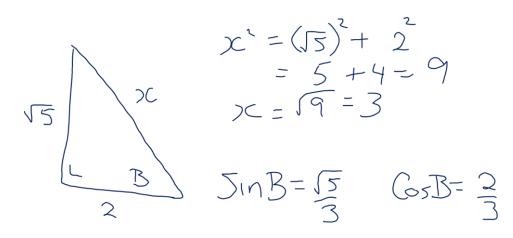
You can then solve for |AC| using the Pythagoras Theorem.

And the sum of the three angels in a triangle = 180, so:

<ABC = 180 - 90 - 20 = 70 degrees

Q4

If $\tan B = \sqrt{5} / 2$, find the value of $\sin B$ and $\cos B$.



Q5

1) Find $\cos 72^{\circ}18'$, correct to 4 decimal places.

Method 1

$$\begin{array}{c|c} c_{a} | c_{u} | d_{e} \\ \hline \hline c_{0} \\ \hline \hline c_{0} \\ \hline \end{array} \\ = 0.30403306 \\ = 0.3040 t_{0} \\ \hline \end{array} \\ \end{array}$$

Method 2

$$72 + 18 = 72 \cdot 3$$

 $C_{05}(72 \cdot 3) = 0.30403306$
 $= 0.3040$ to 4 dp

2) If sin A = 0.5216, find A correct to the nearest second.

Method 1

$$SIN^{-1}(SINA) = SIN^{-1}(0.5216)$$

 $A = [Shift][Sin][0.5216]$
 $= 31.43963765^{\circ}$
 $[0111] = 31^{\circ}26'227''$
 $= 31^{\circ}26'23''$ to nearest second

Method 2

$$31 \cdot 43963765^{\circ}$$

= $31^{\circ} + 0.43963765 \times 60^{\circ}$
= $31^{\circ} + 26.37825916^{\circ}$
= $31^{\circ} + 26^{\circ} + 0.37825916 \times 60^{\circ}$
= $31^{\circ} + 26^{\circ} + 0.37825916 \times 60^{\circ}$
= $31^{\circ} + 26^{\circ} + 2.6955^{\circ} = 31^{\circ} + 26^{\circ} + 2.6955^{\circ}$

3) If $\sin A = 4/7$, find A

$$S_{in}^{-1}(S_{in}A) = S_{in}^{-1}(\frac{4}{4})$$

$$A = S_{hi}F_{f}S_{in}G_{4} = 7 DE$$

$$A = S_{hi}F_{f}S_{in} + 7 E$$

$$A = 34 \cdot 8^{\circ}$$

4) Given $D = 3 / 4\pi Rads$ find cosec D

Cosec is the reciprocal of Sine

$$\left(\operatorname{Osec}\left(\frac{3\pi}{4}\right) = \left(\operatorname{Sin}\left(\frac{3\pi}{4}\right)\right)^{-1} = \frac{1}{\operatorname{Sin}\left(\frac{3\pi}{4}\right)}$$

Radian Mode = $1 \cdot 4/42/3562$
 $\left(\operatorname{Sin}\right)\right)\right)\right)\right)\right)\right)\right)}\right)\right)\right)}\right)}\right)$

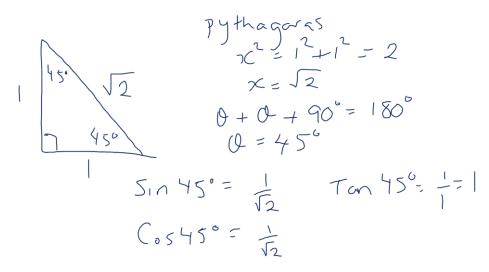
Q6

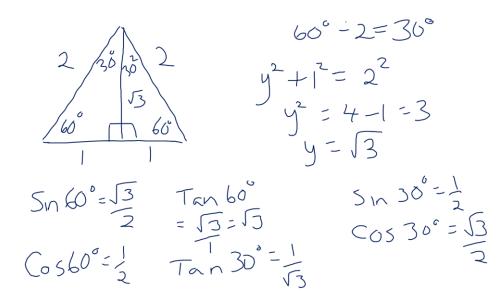
Make sketches of the following triangles:

• An Isosceles right-angled triangle with sides = 1 unit.

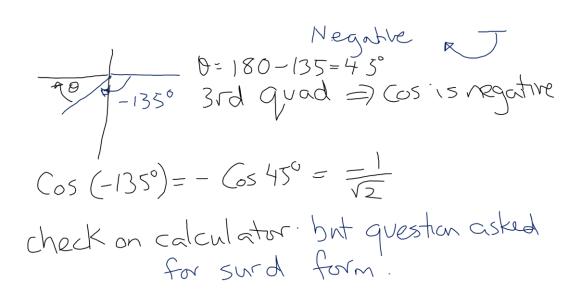
• An Equilateral triangle with sides = 2 units. Draw a line to divide this triangle into two equal right-angled triangles.

Solve all three triangles and hence calculate Sin, Cos and Tan of 30°, 45° and 60° in surd form.

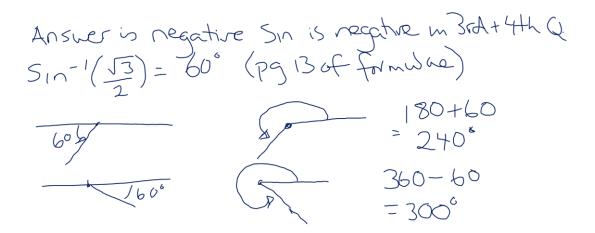




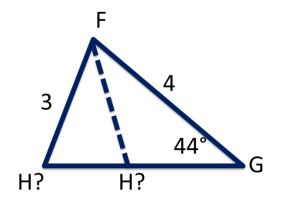
Q7 1) Express in surd form, cos (-135°).



2) If $\sin x = -\sqrt{3}/2$, find two values for x if $0^{\circ} \le x \le 360^{\circ}$.



Q8 In a triangle FGH, |FG| = 4cm, |FH| = 3cm and $|\angle FGH| = 44^{\circ}$. Find the possible values of $\angle FHG$.



Use the Sine Rule

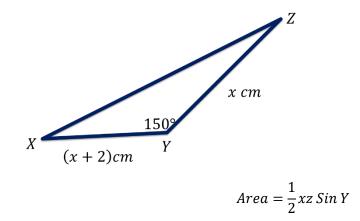
Pair? Yes = G and g. Second Pair? Have h but looking for H.

$$\frac{Sin H}{h} = \frac{Sin G}{g}$$
$$Sin H = h \frac{Sin G}{g}$$
$$H = \sin^{-1} \left(h \frac{Sin G}{g} \right)$$
$$H = \sin^{-1} \left(4 \frac{Sin 44}{3} \right)$$
$$H = 67.851702^{\circ}$$

or, $H = 180^{\circ} - 67.85^{\circ} = 112^{\circ}$

Q9

Given that the area of this triangle is 6 cm_2 find the value of x



$$6 = \frac{1}{2}x(x+2) \sin 150^{\circ}$$

$$12 = x(x+2) \sin 30^{\circ}$$

$$12 = x(x+2) \frac{1}{2}$$

$$24 = x(x+2)$$

$$x^{2} + 2x - 24 = 0$$

$$(x+6)(x-4) = 0$$

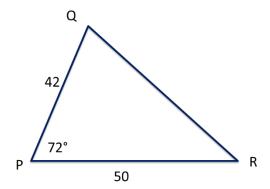
$$x = -6 \text{ or } x = 4$$

Can't have a negative length,

therefore x = 4 cm

Q10

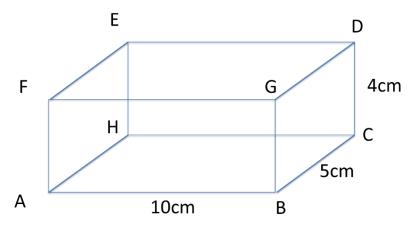
A builder ropes off a triangular plot of ground, PQR. The length of |PQ| = 42 m and the length of |PR| = 50 m. $|\angle QPR| = 72^{\circ}$. Calculate the length of rope needed by the builder. Give your answer correct to one decimal place.



Use the Cosine Rule

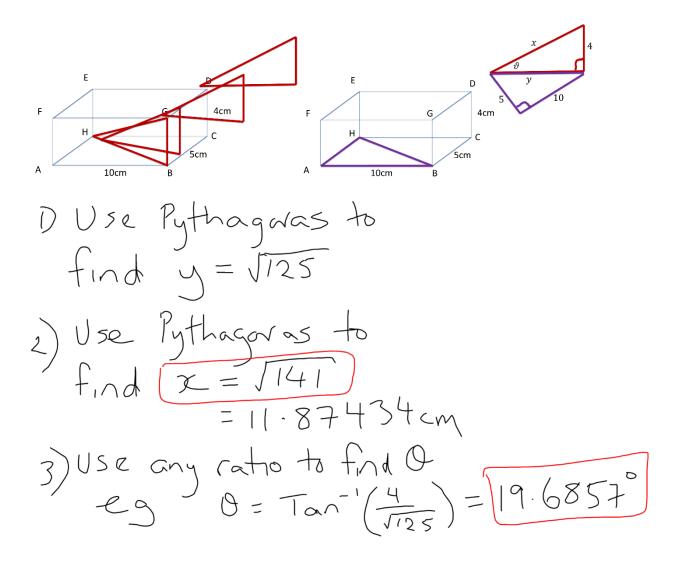
Pair? No SAS? Yes = rPq Looking for p $p^2 = r^2 + q^2 - 2rq \cos P$ $p^2 = 42^2 + 50^2 - 2(42)(50) \cos 72$ $p^2 = 1764 + 2500 - (4200)(0.30901699) = 2966.1286236$ p = 54.4621760 = 54.5 m correct to 1.d.p. Rope needed = 42 + 50 + 54.5 = 146.5 m

An open rectangular box has dimensions 10cm by 5cm by 4cm, as shown.



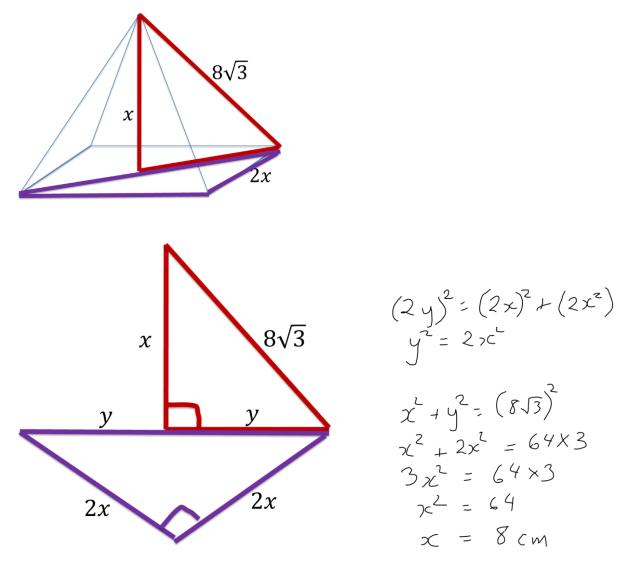
1) Find the length of the diagonal [GH].

2) Find the measure of the angle between GH and the base of the box.



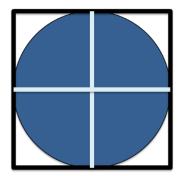
Q12

The diagram represents a right pyramid. The base is a square of side 2x *cm*. The length of each of the slant edges is $8\sqrt{3}cm$. The height of the pyramid is *x cm*. Calculate the value of *x*.



Q13

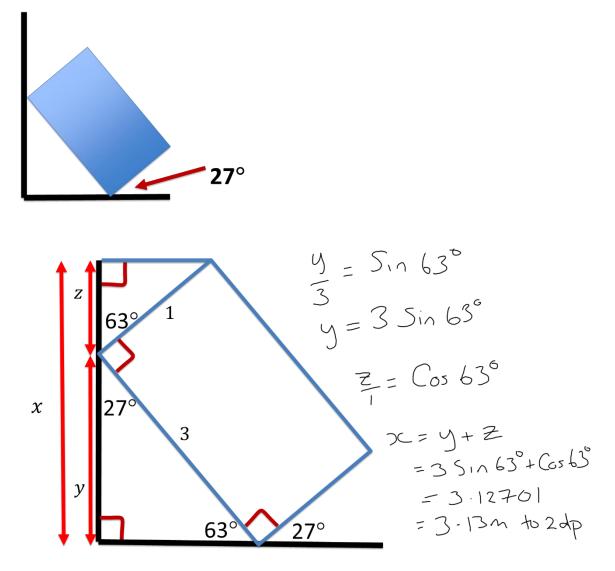
A square is inscribed in a circle, as shown. If the area of the circle is π square units, find the area of the square.



$$A_{c} = \pi r^{2} = \pi$$
$$\Rightarrow r = 1$$
$$A_{s} = 2r \times 2r$$
$$= 4r^{2} \qquad x$$
$$= 4 \text{ sg units}$$

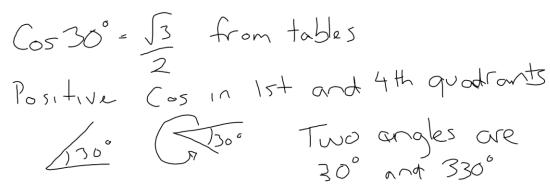
Q14

A rectangular paving stone 3m by 1m rests against a vertical wall as shown. What is the height of the highest point of the stone above the ground? Give your answer in meters, correct to two decimal places.



Q15

Find all the solutions to the equation $\cos 3x = \sqrt{3}/2$, for $0^{\circ} \le x \le 360^{\circ}$.



$$5_{0} 3_{x} = 30^{\circ} \quad \text{or} \quad 3_{x} = 330^{\circ}$$

 $x = 10^{\circ} \qquad x = 110^{\circ}$

Period = 360/3 = 120

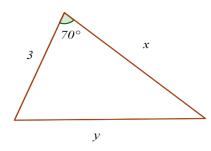
So, x=10+120=130, x=130+120=250, x=110+120=230, x=230+120=350

Q16

The area of the triangle shown is 15 square units.

- Find the value of *x*, correct to two decimal places.

– Using the Cosine Rule, find the value of *y*.



 $Area = \frac{1}{2}zxSinY = \frac{1}{2}(3)(x)Sin(70) = 1.409538931179x$

$$Area = 15 = 1.409538931179x$$

$$\begin{aligned} x &= \frac{15}{1.409538931179} = 10.64178 \approx 10.64 \ units \\ y^2 &= x^2 + z^2 - 2xzCosY \\ y^2 &= x^2 + 3^2 - 2x(3)Cos70 \\ \end{aligned}$$

$$y^2 &= \left(\frac{15}{1.409538931179}\right)^2 + 3^2 - 2\left(\frac{15}{1.409538931179}\right)(3)Cos70 \\ y^2 &= 113.2474331 + 9 - 21.83821406 \\ y^2 &= 100.4092191 \\ y &= \sqrt{100.4092191} = 10.02044006 \approx 10.02 \end{aligned}$$

The diagram shows a semi-circle standing on a diameter [AC], and $[BD] \perp [AC]$. If |AB|=x and |BC|=1 and |BD|=y, write y in terms of x.

