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Competency Framework Wheel



This presentation builds on previous work presented at the 2021 IFoA Spring 
Conference* and is aimed at those relatively new to machine learning

• Reminder of machine learning framework for modelling triangle data

• Data

• Results

• Diagnostic charts

• Next steps

• Q&A

Agenda

*https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/f-mlr3example/

https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/f-mlr3example/


• Who are we?
– International group of actuaries, data scientists and academics from diverse backgrounds, 

chaired by Sarah MacDonnell

• What are our aims?
– Learn how machine learning (ML) can be used in non-life reserving
– Carry out research on the use of ML in reserving

• Our workstreams
– Foundations
– Literature Review
– Survey
– Data
– Research

Find us at https://institute-and-faculty-of-actuaries.github.io/mlr-blog/

Machine Learning in Reserving Working Party

https://institute-and-faculty-of-actuaries.github.io/mlr-blog/
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Incremental loss triangle

Available data

To be predicted

1 2 3 4 5

1 1,054,995 717,048 885,139 526,803 764,239

2 1,065,209 1,210,129 849,025 658,627

3 1,077,450 1,041,976 866,843

4 1,210,198 886,174

5 985,520

Incremental loss data table

Training data

Test data

Acc Dev Incremental loss

1 1 1,054,995

1 2 717,048

1 3 885,139

1 4 526,803

1 5 764,239

2 1 1,065,209

2 2 1,210,129

2 3 849,025

2 4 658,627

2 5

3 1 1,077,450

3 2 1,041,976

3 3 866,843

3 4

3 5

4 1 1,210,198

4 2 886,174

4 3

4 4

4 5

5 1 985,520

5 2

5 3

5 4

5 5

Incremental loss data table

Training data

Test data



Accident period Development period Incremental loss

1 1 1,054,995

1 2 717,048

1 3 885,139

1 4 526,803

1 5 764,239

2 1 1,065,209

2 2 1,210,129

2 3 849,025

2 4 658,627

2 5

3 1 1,077,450

X = “Features” or “Predictors” 
or “Inputs” or “Independent 
variables”

Framework

𝑌 ≈ 𝑓 𝑋

Y = “Target” or “Output” or 
“Response” or “Dependent 
variable”

𝑌 − 𝑓 𝑋
2



Features

*Based on an example from the book “Deep Learning with R” by Francois Chollet with J.J. Allaire

1.30 3.00 8.30 6.30 11.00

X

Y

Angle_h 45 90 255 195 330
Angle_m 180 0 180 180 0

E.g. calendar period



Hyperparameters and tuning

• Example – quadratic plus random 
noise

• Fit a polynomial using first 20 
points (training data)

• Predict the value at x = 21 (test 
data)

• Degree of polynomial is a 
hyperparameter

Degree 1
Degree 2
Degree 10

Fitted degree 10 polynomial

Degree Coefficient (8 d.p.)

0 -238.55557107

1 527.98064914

2 -467.44388076

3 215.95720909

4 -57.71678693

5 9.47357302

6 -0.98249199

7 0.06447184

8 -0.00259272

9 0.00005828

10 -0.00000056



• Withhold some training data from fitting process and use this 
data to estimate performance out-of-sample for candidate 
hyperparameter

Cross validation

10

Acc Dev Incremental loss Cross validation fold

1 1 1,054,995 2

1 2 717,048 2

1 3 885,139 1

1 4 526,803 3

1 5 764,239 2

2 1 1,065,209 1

2 2 1,210,129 1

2 3 849,025 3

2 4 658,627 3

2 5 N/A

3 1 1,077,450 3

3 2 1,041,976 3

3 3 866,843 2

3 4 N/A

3 5 N/A

4 1 1,210,198 1

4 2 886,174 2

4 3 N/A

4 4 N/A

4 5 N/A

5 1 985,520 1

Acc Dev Incremental loss Cross validation fold

1 1 1,054,995 2

1 2 717,048 2

1 3 885,139 1

1 4 526,803 3

1 5 764,239 2

2 1 1,065,209 1

2 2 1,210,129 1

2 3 849,025 3

2 4 658,627 3

2 5 N/A

3 1 1,077,450 3

3 2 1,041,976 3

3 3 866,843 2

3 4 N/A

3 5 N/A

4 1 1,210,198 1

4 2 886,174 2

4 3 N/A

4 4 N/A

4 5 N/A

5 1 985,520 1

Training data - folds 1 and 2

Fold 3 - estimate test error for candidate hyperparameter

Initialise a candidate hyperparameter value

Train the model on folds 1 and 2

Estimate the test error using fold 3

Acc Dev Incremental loss Cross validation fold

1 1 1,054,995 2

1 2 717,048 2

1 3 885,139 1

1 4 526,803 3

1 5 764,239 2

2 1 1,065,209 1

2 2 1,210,129 1

2 3 849,025 3

2 4 658,627 3

3 1 1,077,450 3

3 2 1,041,976 3

3 3 866,843 2



LASSO

Minimise the expression below:

Hyperparameter

ⅇ𝛽0+𝛽1𝑥1+⋯𝛽𝑝𝑥𝑝

Select 𝜆 Fit model (fits a 𝛽𝑖 for each feature 𝑥𝑖) 



XGBoost

Acc qtr > 20

Dev qtr > 35 Dev qtr > 30

£32m £1m£25m £1m

Yes

YesYes

No

No No

• Individual decision tree model typically performs poorly

• XGBoost outputs a collection of decision trees –
combined prediction much better

• Several hyperparameters control how the collection of 
decision trees is constructed – number of trees to use, 
rate of adjustment from one tree to the next, tree depth 
and many more

• Outstanding track record in data science prediction 
competitions 

• Not easy to grasp the details behind fitting procedure



Data
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claim_no pmt_no occurrence_period occurrence_time claim_size notidel setldel payment_time payment_period payment_size payment_inflated payment_delay Location Claim Type

1 1 1 0.10 570,164 4.16 3.37 4.63 5 11,186 11,575 0.37 Rural Property Damage

1 2 1 0.10 570,164 4.16 3.37 5.16 6 11,702 12,156 0.53 Rural Property Damage

1 3 1 0.10 570,164 4.16 3.37 5.63 6 8,971 9,352 0.48 Rural Property Damage

1 4 1 0.10 570,164 4.16 3.37 6.28 7 10,806 11,319 0.64 Rural Property Damage

1 5 1 0.10 570,164 4.16 3.37 6.51 7 9,451 9,917 0.24 Rural Property Damage

1 6 1 0.10 570,164 4.16 3.37 6.87 7 13,237 13,926 0.35 Rural Property Damage

1 7 1 0.10 570,164 4.16 3.37 7.48 8 428,551 452,907 0.62 Rural Property Damage

1 8 1 0.10 570,164 4.16 3.37 7.63 8 76,260 80,683 0.15 Rural Property Damage

2 1 1 0.93 153,137 0.10 99.01 17.43 18 5,657 6,435 16.40 Urban Bodily Injury

2 2 1 0.93 153,137 0.10 99.01 33.20 34 5,184 6,625 15.77 Urban Bodily Injury

2 3 1 0.93 153,137 0.10 99.01 48.45 49 4,786 6,847 15.26 Urban Bodily Injury

2 4 1 0.93 153,137 0.10 99.01 64.20 65 5,468 8,787 15.75 Urban Bodily Injury

2 5 1 0.93 153,137 0.10 99.01 78.01 79 5,085 9,049 13.81 Urban Bodily Injury

2 6 1 0.93 153,137 0.10 99.01 91.41 92 119,927 216,602 13.40 Urban Bodily Injury

2 7 1 0.93 153,137 0.10 99.01 100.04 101 7,030 12,696 8.63 Urban Bodily Injury

Inflation

Exposure level

Frequency

Severity

Occurrence delay

Notification delay

Settlement delay

Train

Test



Data
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The SynthETIC R package* implements a simulation machine for 
claims data using the methodology described by Avanzi et al, 2020.

Four interesting environments are already in the public domain**

We simulated twenty triangles for each environment

*https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/synthetic/ for background **https://github.com/agi-lab/reserving-MDN-
ResMDN

https://arxiv.org/abs/2008.05693


Data
Environment 1 Environment 2



Data
Environment 3 Environment 4



Data
Environment 5



Summary of modelling approach

20 simulations of 40 x 40 triangle of accident x development quarter. 

Training data is calendar quarter <= 40, test data is calendar quarter>40

Chain ladder (volume all), LASSO and XGBoost fit using accident and development 
quarter factors as features (“_Basic” models)

5-fold random cross validation

LASSO lambda tuned per blog post* and XGBoost n_rounds tuned

Additional features engineered based on LASSO blog post* to capture interactions 
and calendar/accident/development period trends. LASSO and XGBoost fitted to 
this data (“_Extra” models) 

*https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/f-lasso/

https://institute-and-faculty-of-actuaries.github.io/mlr-blog/post/f-lasso/


• The examples here are intended to be 
instructional rather than conclusive

• We make no claims about the 
superiority/inferiority of any individual 
machine learning method for reserving in 
general.

• Real world data will introduce more problems

• Better performance in our examples may be 
possible with more time to tune the 
hyperparameters/different cross validation 
approach/different loss function 

Caveat

19



Results

Average reserve error across all 20 random seeds

Environment Description Chain ladder LASSO_Basic LASSO_Extra XGBoost_Basic XGBoost_Extra

1 Simple, short tail 1% 13% 0% 2% -3%

2 30% uplift to incremental paid from cal qtr 30 onwards 9% 21% 1% 6% 0%

3 Superimposed inflation jumps to 20% after cal qtr 30 -33% -39% -3% -54% -25%

4 Gradual increase in claims processing speed 95% 111% 2% 65% 9%

5 Longer tail, more volatile claims development 53% 3% 23% -21% -25%

Absolute value of average reserve error across all 20 random seeds

Environment Description Chain ladder LASSO_Basic LASSO_Extra XGBoost_Basic XGBoost_Extra

1 Simple, short tail 1% 13% 0% 2% 3%

2 30% uplift to incremental paid from cal qtr 30 onwards 9% 21% 1% 6% 0%

3 Superimposed inflation jumps to 20% after cal qtr 30 33% 39% 3% 54% 25%

4 Gradual increase in claims processing speed 95% 111% 2% 65% 9%

5 Longer tail, more volatile claims development 53% 3% 23% 21% 25%

Average reserve error [(predicted future paid / actual future paid) – 1] across all 20 random seeds



• Shiny app walkthrough

Results



• In simulated data, ML methods were able to reproduce CL results 
on simple development data and pick up on calendar / accident 
period trends that cause CL problems

• Reviewing a range of diagnostics is useful for interpreting machine 
learning (any) models

• Lots more work to do! 

Conclusion



• Rolling origin cross validation

• Loss function – claims development result

• Real-world data

• Further model interpretation and diagnostics

Further work on triangles



Q&A

Please use the Q&A function to ask a question


