

Society of Actuaries in Ireland

Prospects for Covid-19 Medicines

Ivor O'Shea

1 May 2020

© Society of Actuaries in Ireland

Disclaimer

The views expressed in this presentation are those of the presenter and not necessarily

those of the Society of Actuaries in Ireland.

Agenda

- 1. Short biotech primer
- 2. Prospects for vaccines
- 3. Prospects for antivirals
- 4. Prospects for antibodies
- 5. Prospects for 'repurposed' drugs
- 6. Future Scenarios & Conclusion

1. Short Biotech Primer

- Pre-clinical
 - Develop & refine a prototype
 - Test on blood/tissue samples
 - Test on animals
- Phase I (c.25-75 Fit & Healthy Adults)
 - Escalating drug doses in <u>sequential</u> manner
 - Goal = High-level safety & hints of effectiveness

- Phase II (c.200-500 Healthy Adults)
 - Test doses & placebo in parallel manner
 - Goals = safety & level of antibody response
 - Company = controls trial design, conduct & analysis
- Phase III (c.40,000+ Average Adults)
 - 2 similar trials done in parallel
 - Goals = establish vaccine effectiveness & detailed safety
 - Regulator = controls trial design, conduct & analysis
- Regulatory Approval
 - Key regulators are US's FDA and EU's EMA

1st Phase III Trial for Zostavax Shingles Vaccine

Trial Arm	Lives Included (aged 50-59)	Shingles Cases	Incident Rate (per 1,000 exposure years)
Zostavax Vaccine	11,211	30	1.994
Placebo Injection	11,228	99	6.596

- Vaccine **70%** effective (i.e. 1 − 1.994/6.596)
- Lives tracked for 1.3 years to accrue cases (plus time to enrol)
- Highlights key facets of Phase III vaccine trials
 - No vaccine is 100% effective
 - Thousands of lives needed to accrue required infections
 - Requires time to accrue infections
 - Pathogen must be actively circulating during the trial

Infectious Disease Medicine Development

Stage	Nominal Probability Of Approval	Adjusted Covid-19 Probability Of Approval	Average Stage Duration
Phase I	20%	31%	1.5 years
Phase II	31%	42%	2.0 years
Phase III	65%	69%	2.3 years
Regulatory Approval	88%	94%	1.3 years

- Adjustments to nominal probabilities
 - c.25% Phase I & II stop for 'non-scientific' reasons assume doesn't apply here
 - Regulators accommodative for Covid-19
- Speed up by doing work in parallel, quick enrolment & just 1 Phase III
- Approval has a high bar on safety & a low bar on efficacy
 - One third of all drug launches are commercial failures

2. Prospects for Vaccines

- 70+ vaccines in development
 - 5 discussed in Appendix A
- Pre-clinical & Phase I reports suggests multiple vaccines have promise
- Covid-19 not intrinsically difficult to produce a vaccine for
 - Coronavirus vaccines successfully developed for animals
 - Unlike HIV, Hepatitis C and HSV where all vaccines have failed
- I have no doubt multiple vaccines will be speedily developed
- However, valid concerns about
 - Scaling up manufacturing
 - Issues with the elderly and children
 - Difficulty in achieving 'herd immunity'

Subunit Vaccines

Uses a distinctive pathogen fragment that immune system develops antibodies against. Fragments are currently manufactured through complicated fermentation. Most modern vaccines are of this type.

- Pros
 - Adjuvants boost effectiveness & lower dosage levels
 - Safer than traditional vaccines (critical if skipping safety work here)
 - Work even if immune system weakened
- Cons
 - Time consuming to design
 - Still moving from low yield & slow to scale up manufacturing (e.g. popular Gardasil vaccine for HPV current capacity is <c.50m doses) to next gen. with high yields & quick to scale up

RNA/DNA Vaccines

Uses DNA (or RNA) that codes for a distinctive pathogen subunit. Enters into person's cells using a 'vector' – often an altered (harmless) virus – where gets translated into many copies of the desired subunit.

- Pros
 - Small dose amounts allow for huge production runs
 - Design process is quick
- Cons
 - None has yet been approved by regulators
 - None has yet passed a full Phase III trial
 - None has yet been produced at commercial scale
 - Don't readily have their potency boosted by adjuvants

Vaccines Issues – The Elderly

Age Band	Zostavax Shingles Vaccine Effectiveness	Shingrix Shingles Vaccine Effectiveness
50 – 59	70%	97%
60 - 69	64%	97%
70 – 79	41%	91%
80+	18%	91%

- Immune system declines with age & impairs vaccine effectiveness
- Can counter through effective vaccine design
 - Zostavax (2006) = 'Traditional' 1-dose modified virus vaccine with no adjuvant
 - Shingrix (2017) = 'Modern' 2-dose subunit vaccine with <u>superlative</u> adjuvant
- Similar age-related trends apparent with influenza vaccines
- Strategically concerning problems
 - Elderly most vulnerable to Covid-19
 - Undermines population-wide herd immunity
 - A Shingrix-like solution will likely be slow to develop & hard to make

- Covid-19 vaccine trials only using adults
- Only after launch will trials begin on children
 - May have to lower the dose or adjust the injection schedule
- Strategically concerning problems
 - Standard safety tests are being skipped
 - Phase III trials may be truncated or bypassed completely
 - Children least affected by Covid-19
- Take-up could then be disappointing
 - Regulators may not recommend initial use on children
 - Parents may not consent without full & complete safety data
- Many vaccines don't work on infants

- Target is world population of c.7.8bn people
- Influenza vaccines the biggest seller
 - Yearly capacity = c.1.5bn people (versus <0.15bn for a childhood vaccine)
 - Made across c.35 plants
- Risk secondary pandemics if existing plants commandeered
- Several pivotal manufacturing binaries
 - Will DNA/RNA & 'next gen.' subunit vaccines deliver promised quantum leap?
 - Will a 1 or 2 dose vaccine regime be needed for non-elderly lives?
 - Will effectiveness last more than 2-3 years?
 - Will large vaccine doses be required?
- Biggest bottleneck could be skilled people not money, red tape or construction

- Skip altogether to save time?
 - Need to determine best-performing vaccines
 - Safety data on broad cross-section of population
 - Manufacturing ramping up H2 20 to H2 21 so window exists
- Run as 'virus challenge' trials to save time?
 - Not tenable for older lives which vaccine should they then get?
 - Misleading outcomes challenge level may not match real-world
- WHO proposed multi-drug Phase III trial a good model
 - Efficient as just 1 placebo arm compared to several vaccines
 - Quick enrolment as low chance of getting a placebo
 - No need for 2nd Phase III trial
 - Definitive effectiveness comparison between vaccines

4. Prospects for Antivirals

Antivirals - Background

- Directly attack the virus (independent of immune system)
- Manufacturing quick & highly scalable
- Effective at controlling HIV and curing Hepatitis C
 - Approaches used there not effective against Covid-19
- Antiviral effectiveness against influenza is likely a better guide...

Influenza Antiviral	Format	Improvement in Recovery Time	Mortality Benefit	Prevention Effectiveness
Rapivab	Injection	0.9 days	None	Not practical
Relenza	Inhalation	1.2 days	None	67%-86%
Tamiflu	Tablet	1.3 days	None	75%-94%
Xofluza	Tablet	1.1 days	None	86%

- Must take within 2 days of symptoms emerging
- Prevention requires prior daily dosing & only tablets/inhalation practical

Antivirals - Remdesivir Class

- Developed for Ebola & moderately effective
- Ebola & covid-19 are the same type of single-stranded RNA virus
- Large Phase III trials under way
 - Reduced recovery time by 4 days (good for hospital capacity)
 - Reduced mortality from 11.6% to 8.0% (not statistically significant)
- Only dosable through I.V. drip
 - Preventative use impractical
- Galidesivir is the only other antiviral similar to Remdesivir
 - Currently in Phase I (I.V. drip format)
 - Critically, its chemistry allows tablet dosing
- No other current antivirals show promise
 - 4-5 years to launch new antiviral classes from scratch

4. Prospects for Antibodies

Antibodies

- Vaccines' purpose is to induce immune system to make antibodies
- Other ways to generate antibodies
- Firstly, precedent with RSV (influenza-like virus)
 - Synagis approved in 1998 to treat RSV in children (no successful vaccine exists)
 - Consists of engineered antibodies grown in fermentation factories
 - Monthly injections to high-risk children during winter seasonal peak
 - 45%-55% effective against RSV infection
- Secondly, precedents with Ebola
 - mAB114 & REGN-EB3 are engineered Ebola antibodies
 - In Phase III, reduced mortality to c.30% (c.50% in control arms)
 - Promptly treated patients had c.10% mortality

Antibodies

- Thirdly, 'convalescent plasma' is well-established strategy
 - Transfuse plasma from recovered patients (with antibodies) to those currently ill
 - Small trials indicate benefits in Covid-19 & large trials under way
 - Prudent to prepare national blood-collection systems to collect donations
- Fourthly, several Covid-19 engineered antibodies in development
 - Clinical trials are due to begin in 'late summer 2020'
 - May jump straight to Phase II (risk/benefit tolerant for sick patients)

5. Prospects for 'Repurposing' Medicines

Repurposing Medicines (CRS)

- Covid-19 could be viewed as 2 distinct diseases: viral infection & CRS
- CRS = Cytokine Release Syndrome (severe/lethal immune system over-response)
- CRS causing many lung-related Covid-19 deaths
- IL-6 Inhibitors (Actemra, Kevzara & Sylvant)
 - IL-6 immune system component is key to CRS in Covid-19
 - 3 IL-6 drugs already exist (mainly used for rheumatoid arthritis)
 - The remaining immune system can still fight the virus
 - Initial Phase III trial suggests only effective for critically ill (e.g. on ventilator)
- BTK Inhibitor (Calquence) & JAK Inhibitor (Jakafi)
 - BTK & JAK drugs both used to treat 'blood' cancers (cancerous immune system elements)
 - Both have evidence of reducing CRS in Covid-19
 - First non IL-6 drugs 'big pharma' have touted for Covid-19

- Only aware of 3 drugs repurposed for viral infections
 - AZT (failed cancer drug) was the first drug approved for HIV
 - HIV antivirals have moderate effectiveness against Hepatitis B
 - Interferon also has moderate effectiveness against Hepatitis D
- Many existing drugs have been touted for Covid-19
- To date, many trials have been of disappointing credibility
 - Didn't have proper placebo arm (esp. given covid-19's high natural recovery rate)
 - Published reports reveal flaws in procedures & analyses
 - Run in 1-2 hospitals (best practice is to run across dozens of hospitals)
 - Few have had regulator input into trial design & management
 - Side effects may outweigh their, at best, moderate benefits
 - Selection bias as trials purporting to show benefits more likely to submit for publication, get published and gain publicity

6. Future Scenarios & Conclusion

- Stage 1
 - Haven't completed Phase III trials
 - Low production manufacturing only ramping up
 - Risk, benefit & capacity considerations pivotal
- Stage 2
 - Multiple safe, effective, 1 dose vaccines
 - High production manufacturing scaled up
 - Give to whole population adults, the elderly and children
- Stage 3
 - Potent Shingrix-class vaccine (likely 2 dose) that performs well with the elderly
 - Constrained production complex manufacturing
 - Revaccinate everyone aged 60+ (c. 1 billion people)

'Stage 1' Rollout – Who Gets It?

- Regulators have already said health workers will be first
 - Risk/benefit supports first use here
- Implement a 'ring' treatment strategy
 - Everyone in contact with someone infected is immediately vaccinated
 - Everyone in contact with this group are also vaccinated
 - Virus trapped in a double-layered, protected ring
 - Successfully used with Ebola & smallpox 1970's eradication campaigns
 - Important 'carrot' to add to testing & tracing
- Debate needed on care homes
 - Both benefit & risk (immature safety profile) are elevated

Timeline : Vaccine Rollout (Very Speculative Scenarios)

Milestone	'Everything Goes Right'	'Majority Goes Right'	'Manufacturing Struggles'
Start – Stage 1	Q4 20	Q1 21	Q2 21
Start – Stage 2	Q3 21	Q1 22	Q1 22
Start – Stage 3	H1 22	H2 22	H2 22
Finish – Stage 2	Q3 23	Q3 24	H1 26
Finish – Stage 3	H2 23	H1 25	H1 26
Stage 2 – Doses Run Rate	c.325m per month	c.260m per month	c.160m per month
Stage 3 – Doses Run Rate	c.110m per month	c.70m per month	c.50m per month

- Sense check: 3rd Scenario (Stages 2&3) = 210m doses per month
 - >1.5 x run-rate of c.35 mature influenza vaccine plants
- Equitable worldwide distribution assumed
 - If 2nd/3rd scenarios crystallise, developed countries may favour their own citizens

Vaccination – Population Herd Immunity Scenarios

Country	Stage 2 Only No Children	Stage 2 Only Half Children	Stage 2 Only All Children	Stages 2 & 3 No Children	Stages 2 & 3 Half Children	Stages 2 & 3 All Children
Ireland	54%	60%	67%	64%	71%	77%
Italy	56%	60%	64%			79%
Japan	54%	58%	63%	70%	75%	79%
Nigeria	42%	55%		46%	60%	
UK	54%	60%	66%	66%	72%	78%
USA	54%	60%	66%	65%		78%

- Assumptions in Appendix B (Red = No, Yellow = Maybe & Green = Yes)
- Scenarios imply full children take-up & 'Stage 3' vaccine needed
- Developing countries require confidence in vaccinating children

What if Vaccination Can't Provide Full Herd Immunity?

- Vaccines reduce illness severity in addition to help preventing illness
- Sample Spanish hospital influenza study...

Status	Number	% > age 65	% in ICU	CRS in Lungs	Organ Failure	Pneumonia
Vaccinated	450	84%	24%	32%	9%	70%
Unvaccinated	1,261	42%	38%	41%	11%	76%

- Infections required to bridge the gap vaccines & medicines will lower mortality
- Need to establish covid-19 illness reduction in Phase III vaccine trials

Timeline & Success Estimates: Non Vaccine Medicines

Medicine	Results of Phase II/III trials	Regulatory Success Estimate	Mortality Signal Estimate	Medicine Widely Available
Remdesivir	Q2/Q3 20	Yes!	Yes!	Q3 20
Actemra (IL-6)	Q3 20	50%	25%	Q3/Q4 20
Convalescent Plasma	Q3/Q4 20	60%	25%	Q3/Q4 20
Calquence (BTK)	Q4 20	40%	25%	Q4 20
Jakafi (JAK)	Q4 20	40%	25%	Q4 20
Engineered Antibody	Q4/Q1 20/21(?)	70%	50%	Q3/Q4 21(?)

- Trials statistically sized to prove regulatory benefits
 - e.g. time to recovery or % entering ICU
 - Likely undersized to prove mortality benefits but clear signals possible
- If several demonstrate benefits, the cumulative impact could be substantive

- Shingrix adjuvant not yet vindicated by its Phase III trials
- RNA vaccines very experimental & not started in trials
- DNA vaccines still novel & not started in mainstream trials
- Large vaccine players not interested in RNA or DNA vaccines
- Next gen. subunit vaccine manufacturing still experimental & unproven
- Remdesivir yet to show efficacy against Ebola and similar viruses
- Using engineered antibodies to treat Ebola had not happened
- 1 out of 6 currently approved JAK drugs then launched
- 1 out of 3 currently approved IL-6 drugs then launched
- 1 out of 3 currently approved BTK drugs then launched

- Recovery a journey of many steps, not a one-off binary
- Hope is powerful recovery may front-run the science in some areas
- Some current changes will be permanent with many for the better
- Speculative links between implementing the science & recovery

Science Implementation Phase	Example of Recovery
'Stage 1' Vaccine & Some Medicines	Shopping, private healthcare & some sport
'Stage 2' Vaccine & Multiple Medicines	Tourism, travel, dining, entertainment & full sport
'Stage 3' Vaccine & Multiple Medicines	Elderly spending & childcare

Q&A

Appendix A – Vaccines to Watch

- Vaccine Type : Subunit vaccine (no adjuvant)
- J&J is the world's biggest pharma company
- Started quickly & starting Phase I in September
 - Early start has offset subunit vaccines' development delays
- Phase I results in December 2020
- J&J and US govt. spending \$1bn+ to fund development
 - Building manufacturing capacity during 2020
- Crucially, J&J will use semi-proven 'next gen.' sub-unit manufacturing
 - Claim should allow c.1 billion doses per year to be dosed from Q1 21 onwards
- This is a very strong candidate to be an initial vaccine for a 'Stage 1' roll-out and also to play a key role in 'Stage 2'

- Vaccine Type : Subunit vaccine (with the same adjuvant as Shingrix)
- GSK & Sanofi are world's first & fourth largest vaccine players
- Sanofi are the lead developer & have licensed GSK's market-leading adjuvant
 - This adjuvant was also pivotal to the approval of the world's first malaria vaccine
- Sanofi are using next-gen. subunit manufacturing
 - Already proven in an influenza vaccine for the elderly
 - Claim can manufacture up to 1 billion doses a year
- Phase I trials due to start in Q4 20
- Claim regulatory approval could come as early as H2 21
- This is a strong candidate to be the high potency vaccine required for a 'Stage 3' roll-out to older age cohorts

- Vaccine Type : RNA vaccine (no adjuvant)
- Most advanced RNA vaccine in development
- Phase I began in March, Phase II is due to begin in Q2 20 & Phase III in Q4 20
- Mgt. stated 'Stage 1' rollout could start in Q4 20 (for health workers)
- US govt. spending \$0.5bn to fund development
 - Mgt. stated could make 'tens of millions' doses per month in 2021
 - Mgt. emphasised hiring skilled staff as a key risk
- Initial indications are vaccine (and perhaps RNA class) isn't very potent
 - Phase I trial testing only 2 dose versions
 - CEO verbally stated a more potent vaccine will be needed for the elderly
- This is a strong candidate to be the first vaccine ready for a 'Stage 1' rollout and could also play a useful role in 'Stage 2'

- Vaccine Type : RNA vaccine (with no adjuvant)
- A combined Phase I & II trial began in April
- Pfizer (3rd largest vaccine player) agreed to co-finance & co-launch
 - Bought \$113m of BioNTech shares & paid an initial \$74m milestone
- Fosun agreed to partner for China only
 - Bought \$50m of BioNTech shares
- Deal terms very high for an early-stage medicine
- Will manufacture 'hundreds of millions' of doses per year
- Also developing 3 other vaccines using variations of RNA technology
- The partnering deals are striking and Pfizer also brings manufacturing heft. This vaccine could play an important role in 'Stage 2'.

- Vaccine Type : DNA vaccine (with no adjuvant)
- World's most advanced Covid-19 vaccine
 - Finished its 3 dose level Chinese Phase I trial on 9 April
- BUT the 'high' dose failed in Phase I due to side effects
 - Clear-cut safety failure is rare in vaccine trials
- Has now started Phase II with remaining 'low' and 'medium' doses but...
 - Normally would redo Phase I to understand side effect issues
 - Remaining doses less likely to produce a potent vaccine
- Media reports suggest side effects were also seen with 'medium' dose
 - Side effects may become unacceptable as frailer lives are tested
 - Developed countries now unlikely to approve without full Phase III
- This example was picked to highlight the risks & attrition rates involved here

Appendix B – Population Immunity Scenario Assumptions

Variable	Assumption
'Stage 2' Vaccine Effectiveness	Ages 0 – 2 = 0% (i.e. vaccine not effective) Ages 2 – 50 = 75% Ages 50+ = Same as Zostavax
'Stage 3' Vaccine Usage	Ages 60+
'Stage 3' Vaccine Effectiveness	Same as Shingrix
Duration of Vaccine Effectiveness	>=5 years
Population Source	United Nations 2019 Projection – Medium Variant – Year = 2025
Population Take-Up	'Stage 2' 1 dose vaccine = 95% 'Stage 3' 2 dose vaccine = 90%
Children Scenarios	0%, 50% & 100% scale factors applied to ages 0 - 17
Herd Immunity Threshold	67% - 75% (i.e. R ₀ = range of 3.0 – 4.0)
Population Already Immune (Prior Infection)	10%