

Society of Actuaries in Ireland

Intro to Markov Chains Monte Carlo and Excess of Loss Pricing

Thursday 27 June 2019

© Society of Actuaries

Disclaimer

The views expressed in this presentation are those of the presenter(s) and not necessarily

those of the Society of Actuaries in Ireland or

their employers.

Motivation

"I was just guessing numbers and figures" Chris Martin,

The Scientist

Key Ideas

Parameter Uncertainty matters...
 ...and it matters more for reinsurance
 Stop using excel!

Who am I?

- Chris Gibney
- Pricing/Capital Actuary
- Lloyds
- Insurance/Reinsurance/ Retrocession
- Most lines of business

Who works in reinsurance on a day to day basis?

What is excess of loss reinsurance?

Reinsurance

Reinsurance is non linearGearing effect

Reinsurance

Reinsurance

FGU +1m (+20%)

RI Loss +1m (+50%)

Graph made in R Code on SAI website

Parameter Error

Its important to get your parameters *right*...
 ...Small error in parameters = big error in RI loss cost!

Bayes vs Frequentist

- X = Claim Severity
- ► Frequentist
 - $\blacktriangleright X \sim LogN(\mu, \sigma)$

Bayes

X | μ, σ ~ LogN(μ, σ)
μ ~ ???
σ ~ ???

Bayes vs Frequentist

Bayes Formula

$$\blacktriangleright P(Parameter \mid Data) = \frac{P(Data \mid Parameter) \times P(Parameter)}{P(Data)}$$

 $\blacktriangleright P(Parameter \mid Data) \propto P(Data \mid Parameter) \times P(Parameter)$

Markov Chain Monte Carlo

Markov Chain

- Stochastic Process
- ► What happens next only depends on the current state

Equilibrium distribution (Ergodic Theorem)

Markov Chain Monte Carlo

Monte Carlo

- A luxury holiday spot in southern France
- Or a lab at Los Alamos in California
- Calculate expected values using simulation

- X = Claim Severity
- ► Model:
 - $\blacktriangleright X \mid \mu \sim LogN(\mu, \sigma)$
 - $\blacktriangleright \mu \sim f(\theta)$
- We want to find $P(\mu \mid X)$
- So how does the algorithm work?

English:

- 1. Start with some initial value
- 2. Propose an alternative
- 3. Determine which is a better fit
- 4. If the proposal is a better fit, accept it
- 5. If the proposal is a better fit, accept it with a certain probability

Maths:

- 1. Start with an initial value $\mu_{current}$
- 2. Propose an alternative, $\mu_{proposal}$
- 3. Figure out which is a better fit:
 - ► probability_{current} $\propto P(X \mid \mu_{current}, \sigma) \times P(\mu_{current} \mid \theta)$
 - ► probability_{proposal} $\propto P(X \mid \mu_{proposal}, \sigma) \times P(\mu_{proposal} \mid \theta)$
- **4.** IF $probability_{proposal} > probability_{current}$
 - $\blacktriangleright \quad \mu_{current} = \mu_{proposal}$
- 5. ELSE
 - Set Acceptance Probability = $\frac{probability_{proposal}}{probability_{current}}$

- How to come up with a proposal?
- $\blacktriangleright \mu_{proposal} \sim N(\mu_{current}, s)$
- s = proposal width, algorithm parameter
- Markov Chain
- Symmetric distribution
- Ergodic theorum

► In R

Prior

- It's a spectrum
- ► probability_{proposal} $\propto P(X \mid \mu_{proposal}, \sigma) \times P(\mu_{proposal} \mid \theta)$

Burn in

Proposal Width

Conclusion

- MCMC is... a tool
 - ► I like it coz I like Bayes
 - ► I like it coz its easy to implement
 - I like it coz it lets me incorporate benchmark/prior
- ...but MCMC is just a tool

Conclusion

- We have just scratched the surface...
- ...if you like it, let the SAI know!
- …and if you didn't like it …
- Code on website

Questions

