

Society of Actuaries in Ireland

Introduction to Artificial Intelligence

8 April 2019

Disclaimer

The views expressed in this presentation are those of the presenter(s) and not necessarily those of the Society of Actuaries in Ireland or their employers.

Welcome

- Conor Byrne
 - Deputy Chair, SAI Data Analytics
 Subcommittee

Agenda

- What is AI?
- Regression/Classification vs Specification
- How do Neural Networks work?
- Gradient Descent Optimisation
- Why Should Actuaries be Interested?
- Examples

What is AI?

- Al is where the machine's actions/output is indistinguishable from a trained person's actions/output
- Types of AI:
 - Artificial General Intelligence
 - Artificial Narrow Intelligence

General Examples

Speech-to-text	Fraud Detection	Customer Retention	
Machine translation	Pricing	Proxy Models	
Chatbots	Credit Risk	Call-Centre Routing	
Recommender	Sales	Sentiment	
	Anti-Money	Analysis Geographic Analysis	
	Machine translation Chatbots	Machine translation Chatbots Credit Risk Recommender Sales Forecasting Anti-Money	

History of Al

AI HAS A LONG HISTORY OF BEING "THE NEXT BIG THING"...

Timeline of Al Development

- 1950s-1960s: First Al boom the age of reasoning, prototype Al developed
- 1970s: Al winter I
- 1980s-1990s: Second Al boom: the age of Knowledge representation (appearance of expert systems capable of reproducing human decision-making)
- 1990s: Al winter II
- 1997: Deep Blue beats Gary Kasparov
- 2006: University of Toronto develops Deep Learning
- 2011: IBM's Watson won Jeopardy
- 2016: Go software based on Deep Learning beats world's champions

Types of AI

Tribes of AI

- Connectionists (inspired by neuroscience)
- Bayesians (learn from experience)
- Evolutionists (inspired by evolution)
- Symbolists (if....Then...elseif....then....therefore)
- Analogisers (Learn new things based on existing knowledge base)

Data Storage Costs

Digitalization

Number of Wifi-Connected Devices

Connected Devices

Source: Gartner, IDC, Strategy Analytics, Machine Research, company filings, Bil estimates (http://forecastjoy.com/wp-content/uploads/2014/03/deviceforecast.png)

Volume of Data

Computer Speeds

Data Science Tools

Google Trends Keywords 2009 - 2017

Machine Learning

Agenda

- What is AI?
- Regression/Classification vs Specification
- How do Neural Networks work?
- Gradient Descent Optimisation
- Why Should Actuaries be Interested?
- Examples

What are Neural Networks Used For?

- Regression
 - Predicting a real number

- Classification
 - Predicting what category something belongs to

- Unsupervised Learning
 - E.g. Clustering

Regression/Classification vs Specification

Functional Specification:

- Define every single step in the process
- Then implement each step

Regression/Classification

- Define the architecture of the model
- Tell the model what the output should be
- Let the computer find the optimal model
 - Which gives the best match to the desired output

Regression

Linear Regression Model:

$$\hat{Y} = b + aX$$

- Choose Loss Function
 (e.g. Sum of Square Errors)
- Choose parameters a and b which minimise the loss function

Neural Network Model:

$$\hat{Y} = f_1(b_1 + a_1 * f_2(b_2 + a_2 * f_3(\dots f_n(b_n + a_n X))))$$

$$f_1($$

$$)=$$
 "cat"

$$f_1($$

$$) =$$
 "dog"

Digital Photos

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	۰	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Digital Photos are stored as arrays of numbers

$$)=$$
 "cat"

$$) =$$
 "dog"

Digital Text

- Can be converted to vectors of numbers
 - Glove
 - Word2Vec
 - Word Embeddings

$$\hat{Y} = f_1(b_1 + a_1 * f_2(b_2 + a_2 * f_3(\dots f_n(b_n + a_n X))))$$

$$f_1($$

$$)=$$
 "cat"

$$f_1($$

$$) =$$
 "dog"

Regression and Classification

Fraud Customer **Self-Driving Cars Speech-to-text Detection** Retention Machine **Proxy Game Playing Pricing** translation **Models Call-Centre** Reducing **Credit Risk Chatbots Electricity Costs** Routing **Analysing** Sales Sentiment Recommender **Satellite Photos Forecasting Analysis Systems Anti-Money** Geographic **Reading X-rays** Text-to-Speech Laundering **Analysis**

Regression and Classification

Fraud Customer **Self-Driving Cars Speech-to-text Detection** Retention Machine **Proxy Game Playing Pricing** translation **Models Call-Centre** Reducing **Credit Risk Chatbots Electricity Costs** Routing **Analysing** Sales Sentiment Recommender **Satellite Photos Forecasting Analysis Systems Anti-Money** Geographic **Reading X-rays** Text-to-Speech Laundering **Analysis**

Digital Audio Files

- Digital Audio files are stored as a time series of arrays
- Each array contains information on pitch and loudness

Source: ch.mathworks.com

General Examples

Speech-to-text	Fraud Detection	Customer Retention	
Machine translation	Pricing	Proxy Models	
Chatbots	Credit Risk	Call-Centre Routing	
Recommender	Sales	Sentiment	
	Anti-Money	Analysis Geographic Analysis	
	Machine translation Chatbots	Machine translation Chatbots Credit Risk Recommender Sales Forecasting Anti-Money	

Agenda

- What is Al?
- Regression/Classification vs Specification
- How do Neural Networks work?
- Gradient Descent Optimisation
- Why Should Actuaries be Interested?
- Examples

Universal Approximation Theorem

In theory, neural networks can approximate any continuous function

- Corollory: Any task which can be approximated by a continuous function can be approximated by a neural network
 - Any task which can be specified using a continuous function can be approximated by a neural network

How do Neural Networks Work?

How do Neural Networks Work?

How do Neural Networks Work?

http://neuralnetworksanddeeplearning.com


```
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # define all the components that will be used in the NN
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.mp = nn.MaxPool2d(2, padding=0)
        self.drop2D = nn.Dropout2d(p=0.25, inplace=False)
        self.fc1 = nn.Linear(320,100)
        self.fc2 = nn.Linear(100,10)
```


A mostly complete chart of

Agenda

- What is Al?
- Regression/Classification vs Specification
- How do Neural Networks work?
- Gradient Descent Optimisation
- Why Should Actuaries be Interested?
- Examples

Practical Example: Traditional Modelling and Machine Learning

How much is a 1000 square foot house?

Eyeball approach: Around €90k

Linear Regression Predictive Model

- Linear Regression Model:
 - Price = €101,955
 - Slope = 108
 - Intercept = -5,700
 - MSE = 258 million
- But how do you find the slope and intercept?

Functional Specification Approach: Normal Equation

Linear Regression Model:

$$\hat{y} = ax + b = \theta X$$

where:

- $\theta = \begin{bmatrix} a & b \end{bmatrix}$
- $X = [x \ 1]$

Choose Loss Function, such as Mean Squared Error

Calculate parameters theta using formula:

$$\theta = (X^T X)^{-1} X^T y$$

```
theta = (np.linalg.pinv(X.T * X) * X.T) * Y
y_hat = X * theta
```

Linear Regression Predictive Model

Linear Regression Model:

- Price = €101,955
- Slope = 108
- Intercept = -5,700
- MSE = 258 million

Approach 1: Normal Equation

Problem with normal equation:

- Only works if X^TX is invertible
- Doesn't work on other models
- Doesn't work well on large datasets

	86
Slopes	113.16
Intercepts	-11,052.63
MSE	261,059,459.22

	128
Slopes	106.32
Intercepts	-4,736.84
MSE	258,939,860.54

	1708
Slopes	107.68
Intercepts	-5,743.72
MSE	258,689,013.27

	1/08
Slopes	107.68
Intercepts	-5,743.72
MSE	258,689,013.27

- Problem with gridsearch: Very inefficient
 - Only works for models with a handful of parameters

	1708
Slopes	107.68
Intercepts	-5,743.72
MSE	258,689,013.27

- 1. You don't know the slope and intercept, so randomly choose them
- 2. Therefore you start at a random point
- Calculate the slope of the MSE loss surface at that point
- 4. Take a step downhill
- 5. Repeat 3 and 4 until you reach the lowest point on the loss surface

- 1. You don't know the slope and intercept, so randomly choose them
- 2. Therefore you start at a random point
- Calculate the slope of the MSE loss surface at that point
- 4. Take a step downhill
- 5. Repeat 3 and 4 until you reach the lowest point on the loss surface

- 1. You don't know the slope and intercept, so randomly choose them
- 2. Therefore you start at a random point
- Calculate the slope of the MSE loss surface at that point
- 4. Take a step downhill
- 5. Repeat 3 and 4 until you reach the lowest point on the loss surface

SGD gives exact same answer as Normal Equation in this example

SGD: Python Code

```
a = Variable(torch.ones(1,1), requires grad=True)
   b = Variable(torch.ones(1,1), requires grad=True)
    optimizer = torch.optim.SGD([a, b],lr=0.0001) # Use SGD machine-learning algorithm
    loss fn = torch.nn.MSELoss()
                                                  # Use Mean-Squared-Error loss metric
   for i in range(50000):
                                                  # Take 50k steps downhill
      v hat = a*x + b
                                                  # Model.
       loss = loss_fn(y_hat, y)
                                                  # Calculate MSE for this particular model
       optimizer.zero grad()
10
       loss.backward()
11
                                                  # Calculate slope of loss surface
                                                  # Step downhill
       optimizer.step()
12
```


SGD: Cubic Polynomial

```
a = Variable(torch.ones(1,1), requires grad=True)
   b = Variable(torch.ones(1,1), requires grad=True)
   c = Variable(torch.ones(1,1), requires grad=True)
    d = Variable(torch.ones(1,1), requires grad=True)
    optimizer = torch.optim.SGD([a, b, c, d],lr=0.0001) # Use SGD machine-learning algorithm
    loss fn = torch.nn.MSELoss()
                                              # Use Mean-Squared-Error loss metric
                                        # Take 100k steps downhill
   for i in range(100000):
       y hat 2 = a*x**3 + b*x**2 + c*x + d # Model
       loss = loss fn(y hat 2, y)
                                              # Calculate MSE for this particular model
       optimizer.zero grad()
12
       loss.backward()
                                              # Calculate slope of MSE loss surface
13
       optimizer.step()
                                              # Step downhill
14
```

SGD: Cubic Polynomial

SGD: Exponential Model

```
a = Variable(torch.ones(1,1), requires grad=True)
   b = Variable(torch.ones(1,1), requires_grad=True)
   optimizer = torch.optim.SGD([a, b],lr=0.0001) # Use SGD machine-learning algorithm
   loss fn = torch.nn.MSELoss() # Use Mean-Squared-Error loss metric
 6
   for i in range(50000):
                            # Take 50k steps downhill
       y_hat_2 = a*np.exp(x) + b # Model
 8
       loss = loss fn(y hat 2, y) # Calculate MSE for this particular model
       optimizer.zero_grad()
10
       loss.backward()
11
                                    # Calculate slope of MSE loss surface
                                    # Step downhill
       optimizer.step()
12
```

SGD: Exponential Curve

SGD: Exponential Plus Cubic Model

```
a = Variable(torch.ones(1,1), requires_grad=True)
    b = Variable(torch.ones(1,1), requires grad=True)
 3
    optimizer = torch.optim.SGD([a, b],lr=0.0001) # Use SGD machine-learning algorithm
    loss fn = torch.nn.MSELoss()
                                                    # Use Mean-Squared-Error loss metric
 5
 6
                                                    # Take 100k steps downhill
 7
    for i in range(100000):
        y \text{ hat } 2 = a*np.exp(x) + b*x**3
                                                   # Model.
 8
9
        loss = loss fn(y hat 2, y)
                                                    # Calculate MSE for this particular model
        optimizer.zero grad()
10
        loss.backward()
                                                    # Calculate slope of MSE loss surface
11
        optimizer.step()
                                                    # Step downhill
12
```

SGD: Exponential Plus Cubic Model

SGD: Sine Regression

```
a = Variable(torch.ones(1,1), requires_grad=True)
   b = Variable(torch.ones(1,1), requires_grad=True)
3
   optimizer = torch.optim.SGD([a, b],lr=0.0001) # # Use SGD machine-learning algorithm
   loss fn = torch.nn.MSELoss() # Use Mean-Squared-Error loss metric
6
                           # Take 50k steps downhill
   for i in range(50000):
       y hat 2 = a*np.sin(x) + b # Model
8
       loss = loss_fn(y_hat_2, y) # Calculate MSE for this particular model
       optimizer.zero grad()
10
       loss.backward()
                                    # Calculate slope of MSE loss surface
11
       optimizer.step()
                                    # Step downhill
12
```

SGD: Python Code

SGD: Mathematical Background

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (ax_i + b - y_i)^2$$

Calculate the partial derivative of the loss function with respect to each of its parameters. This tells you the slope of the loss surface wrt each of parameters.

$$\frac{\partial MSE}{\partial a} = \frac{1}{m} \sum_{i=1}^{m} (ax_i + b - y_i)x_i$$

$$\frac{\partial MSE}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (ax_i + b - y_i)$$

Then move towards the lowest point on the loss surface by taking small steps downslope.

- If the slope is positive, reduce the parameter.
- If the slope is negative, increase the parameter.

Benefits of SGD

- It is straightforward to calibrate predictive models
- You can build models with thousands of parameters
 - Can work on huge data sets
 - Can achieve human-level accuracy
- You can build models for all different types of data
 - Pictures
 - Videos
 - Audio
 - Text
 - Policyholder datafiles

Benefits of SGD

- It works very well in practice
 - You can choose models which are a good fit to the data
 - Rather than choosing models which you are able to fit to the data

Agenda

- What is AI?
- Regression/Classification vs Specification
- How do Neural Networks work?
- Gradient Descent Optimisation
- Why Should Actuaries be Interested?
- Examples

Jobs that pay over \$100k

Jo	ob title	Average annual salary	Job title	Average annual salary
Ν	leurologist	\$217,837	Data scientist	\$135,315
Ps	sychiatrist	\$194,563	Chief financial officer	\$127,887
A	nesthesiologist	\$173,694	Android developer	\$120,971
Ra	adiologist	\$168,706	Senior software engineer	\$119,791
Pł	hysician	\$165,391	Full stack developer	\$111,709
D	entist	\$157,250	Actuary	\$111,474
D	irector of product manago	ement \$147,363	Tax manager	\$108,515
Su	urgeon	\$140,892	Director of business develo	ppment \$107,789
M	lachine learning engineer	\$137,332	Architect	\$104,080
Vi	ice president of sales	\$136,071	Nurse practitioner	\$103,233

Why Should Actuaries Be Interested?

- Powerful new tools to solve real-world problems
 - Neural Networks for modelling big datafiles
 - Fast open-source end-to-end calculation abilities
 - Gradient Descent = general purpose solver for complex models
- The ultimate wider field?
 - Take actuarial skill-set out of actuarial department and into the real world
- Already familiar with handling data and regression modelling
- Low hanging fruit?
- Superstar salaries for top researchers
- Competition vs data scientists?

Opportunities for Insurance Companies

- Extract value from their data
- Better understanding of risks and opportunities by doing quick, novel analyses of the data
- Good models can do the same amount of work as 1000 people (at any particular task)
 - It may not be feasible for companies to hire 1000 people to perform a certain task
 - But they may be interested in getting an actuary to produce a model which can do that task
 - That model could be scaled up to be run on many computers so could do the work of say 1000 people

Opportunities for Companies

- New companies could develop massive structural advantages over incumbents?
 - E.g. Amazon have massive structural advantages over traditional retailers
 - E.g. companies who improve retention will increase market share over time

Next Steps

Online courses on deep learning (e.g. Coursera / Udacity / FastAI)

Learn Python (or Julia)

https://www.reddit.com/r/learnpython/wiki/index

Meetup groups

SAI Data Analytics Subcommittee

Coursera Deep Learning Course

Jazz improvisation

Face Recognition

Text Generation

Coursera Deep Learning Course

Starry Night

Monet

Gothic

Mona Lisa

Agenda

- What is Al?
- Regression/Classification vs Specification
- How do Neural Networks work?
- Gradient Descent Optimisation
- Why Should Actuaries be Interested?
- Brainstorming

What mapping f() do you want to discover

For dataset X and target variable Y

Which enables you to estimate $\widehat{Y} = f(X)$ for new or updated values of X?

What output / task would you like a computer to do?

General Examples

Speech-to-text	Fraud Detection	Customer Retention
Machine translation	Pricing	Proxy Models
Chatbots	Credit Risk	Call-Centre Routing
Recommender	Sales	Sentiment
	Anti-Money	Analysis Geographic
	Machine translation Chatbots	Machine translation Chatbots Credit Risk Recommender Sales Forecasting Anti-Money

Example: Captioning

In future:

- Run thousands of pictures through the model every week
- The model will output a caption for each picture
- Use model output in recommender system and stock system
- The model predicts what a human captioner would describe it as

Automated Phone Answering System

Example: Fraud Detection

• In future:

- Record the mouse tracks for each claim
- Run these through the model
- The model will predict whether each incoming claim is fraudulent or non-fraudulent

When to use Neural Networks

Some or all of:

- When the problem can't be easily solved using functional specification
 - When you have noisy real-world data
- When you have lots of data
- When you have access to high-speed computing systems
- When accuracy is more important than interpretability
 - May achieve human-level accuracy but may be black-boxish
- When you need to produce results regularly and quickly

Any Questions?

- What is Al?
- Regression/Classification vs Specification
- How do Neural Networks work?
- Gradient Descent Optimisation
- Why Should Actuaries be Interested?
- Examples