

### Society of Actuaries in Ireland

## A practical use of machine learning: Loss reserving models using the LASSO

3 April 2019

### **Disclaimer**

The views expressed in this presentation are those of the presenter(s) and not necessarily those of the Society of Actuaries in Ireland or their employers.

### Acknowledgements

### Joint work by

– Gráinne McGuire, Hugh Miller (Taylor Fry)



- Greg Taylor, Josephine Ngan (University of New South Wales)



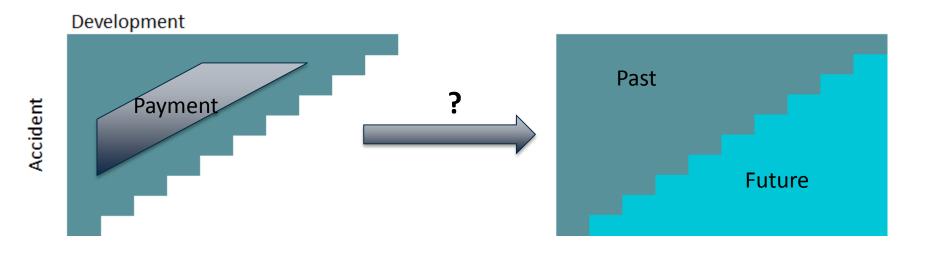
## Outline of presentation

- Loss reserving basics
- Motivation
- Regularised regression and the LASSO
- Case studies
  - Synthetic data
  - Real data
- Discussion
- Conclusions



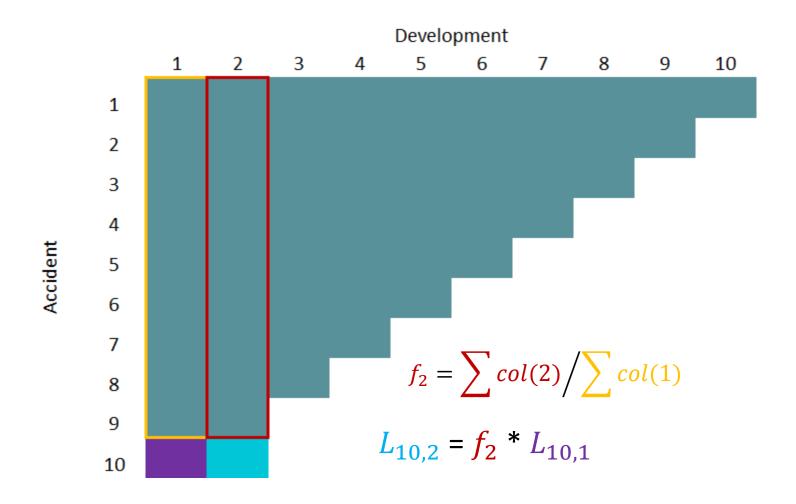
# Loss reserving basics

#### Claims triangle





## Simple method: Chain ladder



## Outline of presentation

- Loss reserving basics
- Motivation
- Regularised regression and the LASSO
- Case studies
  - Synthetic data
  - Real data
- Discussion
- Conclusions



## Motivation

- We consider the modelling of claim data sets containing complex features
  - Where chain ladder and the like are inadequate (examples later)
- When such features are present, they may be modelled by means of a Generalised Linear Model (GLM)
- But construction of this type of model requires many hours (perhaps a week)
  of a highly skilled analyst
  - Time-consuming
  - Expensive
- Objective is to consider more automated modelling that produces a similar GLM but at much less time and expense
- Note that we are not discussing stochastic case estimate type of models here

   those that use individual claim characteristics to produce an estimate of the ultimate loss.
  - Our models mainly use accident, development and payment quarter effects

## Outline of presentation

- Loss reserving basics
- Motivation
- Regularised regression and the LASSO
- Case studies
  - Synthetic data
  - Real data
- Discussion
- Conclusions



## Regularised regression and the LASSO

- Consider general GLM structure  $y = h^{-1}(X\beta) + \varepsilon$  Regularised regression loss function becomes  $L = -2\ell(y; X, \hat{\beta}) + \lambda \|\hat{\beta}\|_p^p$  Log-likelihood
  - Penalty included for more coefficients and larger coefficients, so tends to force parameters toward zero
    - $\lambda \rightarrow 0$ : model approaches conventional GLM
    - $\lambda \rightarrow \infty$ : all parameter estimates approach zero
    - Intermediate values of  $\lambda$  control the complexity of the model (number and size of non-zero parameters)
  - Special case: p = 1, Least Absolute Shrinkage and Selection Operator (LASSO)

$$L = -2\ell(y; X, \hat{\beta}) + \lambda \sum_{j} |\beta_{j}|$$

Favourite ML technique of many - transparent, interpretable model



## LASSO: shrinkage and selection

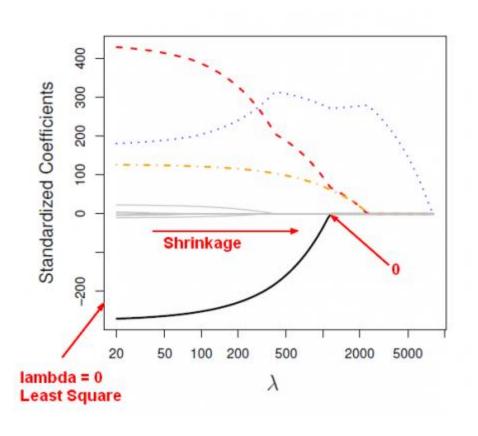


Image sourced from: https://gerardnico.com/data\_mining/lasso

## Outline of presentation

- Loss reserving basics
- Motivation
- Regularised regression and the LASSO
- Case studies
  - Synthetic data
  - Real data
- Discussion
- Conclusions

# Synthetic data sets: construction

- Purpose of synthetic data sets is to introduce known trends and features, and then check the accuracy with which the LASSO is able to detect them
- 4 data sets with different underlying model structures considered
  - In increasing order of stress to the model
- Notation
  - k = accident quarter [AQ] (= 1, 2, ..., 40)
  - j = development quarter [DQ] (= 1, 2, ..., 40)
  - t = k + j 1 = payment quarter [PQ]
  - $Y_{kj}$  = incremental paid losses in (k,j) cell
  - $\mu_{kj} = E[Y_{kj}], \sigma_{kj}^2 = Var[Y_{kj}]$
  - Assume that  $\ln \mu_{kj} = \alpha_k + \beta_j + \gamma_t$  (generalised chain ladder)



## Model formulation

- This is where nearly all the effort is what predictors/regressors do we use?
- Easy part
  - Regressors consist of set of basis functions that form a vector space:
    - All single-knot linear spline functions of k, j, t
    - All 2-way interactions of Heaviside functions of k, j, t
  - AQ splines are
    - max(0, k-1), max(0, k-2), ...., max(0, k-39)
    - Similarly for DQ and PQ
  - AQ x DQ interactions are
    - I(k>1)\*I(j>1), I(k>1)\*I(j>2), ...., I(k>39)\*I(j>39),
    - similarly for AQxPQ and DQxPQ

Heaviside function

**Spline** 

Collinearity in terms – we will come back to that later



## Model formulation

- Hard part
  - Scaling!  $-L = -2\ell(y; X, \hat{\beta}) + \lambda \sum_{j} |\beta_{j}|$

Regressors on different scales



Parameters on different scales



Influences selection

- Make standard deviations comparable?
  - Questionable here we only have 3 fundamental regressors.
     Everything else is derived from these.
- Our approach:
  - Base scaling on the original variables. So all AQ basis functions are scaled by the same amount.

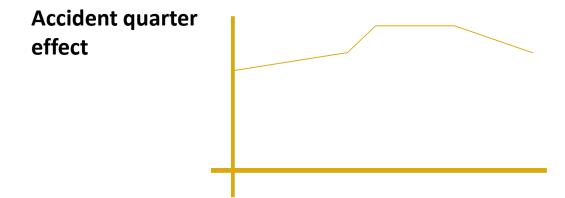


#### Model selection and performance measurement

- Model selection
  - For each  $\lambda$ , calculate 8-fold cross-validation error
  - Select model with minimum CV error
  - Forecast with extrapolation of any PQ trend
    - Due to misallocation of effects between AQ and PQ (can happen due to including all of AQ/DQ/PQ in the model).
- Model performance
  - Visual
  - Training error [sum of (actual-fitted)2/fitted values for training data set]
  - Test error [sum of (actual-fitted)2/fitted values for test data set] (N.B. unobservable for real data)
- Model fitting
  - Done in R
  - glmnet package for LASSO
  - ggplot2 for graphs

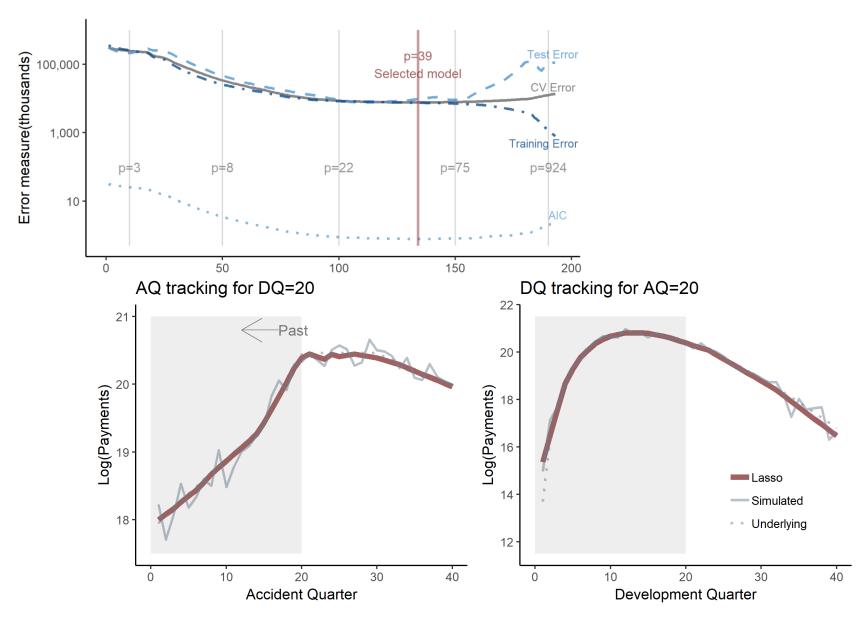


- $ln \mu_{kj} = \alpha_k + \beta_j + \gamma_t$ 
  - $-\beta_j$  follows Hoerl curve as function of j,
  - $-\gamma_t$ =0 (no payment year effect),
  - $-\alpha_k$  as in diagram





# Synthetic data set 1 - results



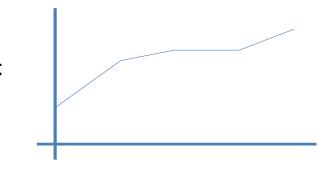


- $ln \mu_{kj} = \alpha_k + \beta_j + \gamma_t$ 
  - $\alpha_k$ ,  $\beta_j$  as for data set 1,
  - $\gamma_t$  as in diagram

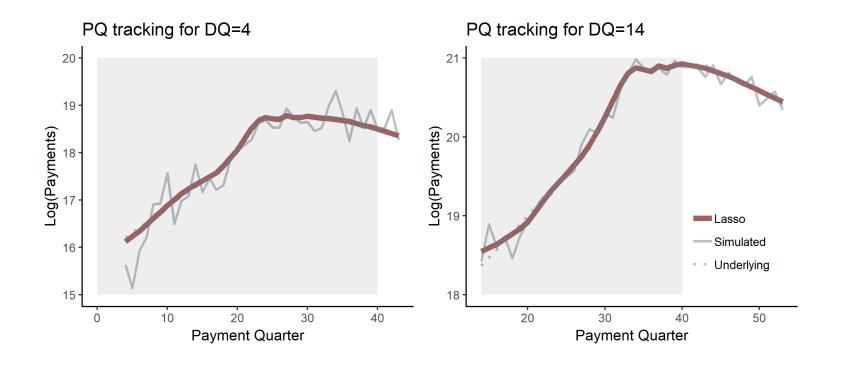




Payment quarter effect

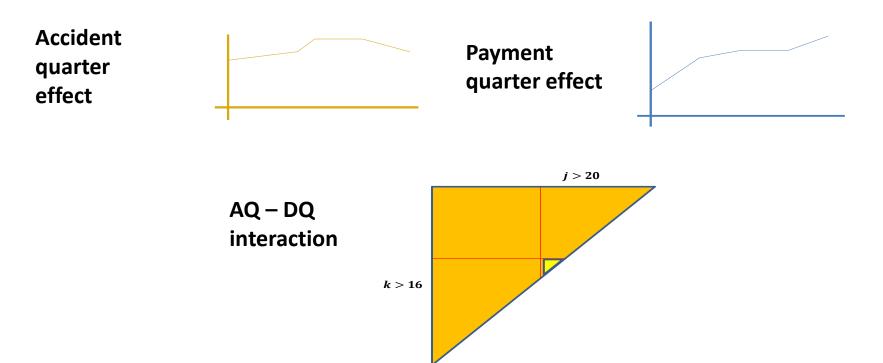




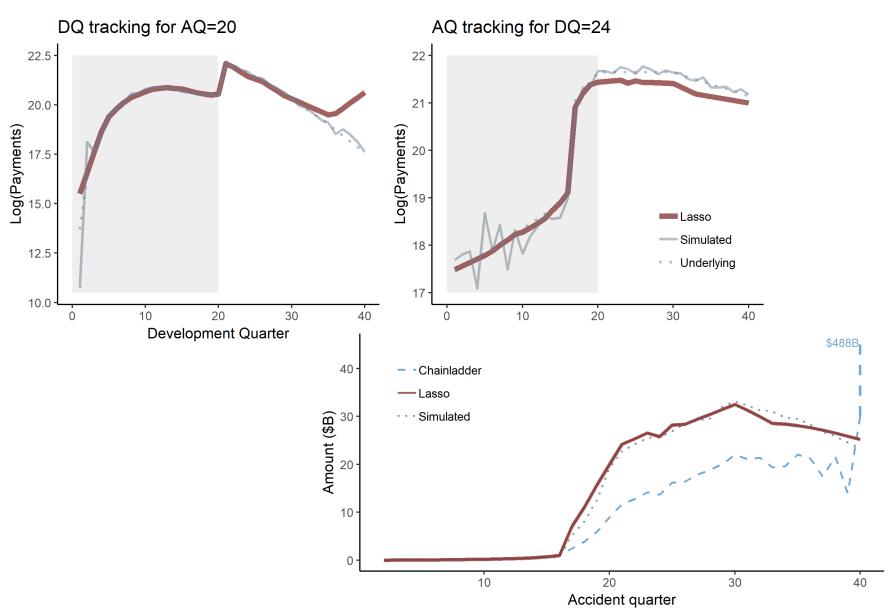




- $ln \mu_{kj} = \alpha_k + \beta_j + \gamma_t$ 
  - $\alpha_k$ ,  $\beta_j$  as for data sets 1&2,
  - $\gamma_t$  as for data set 2,
  - AQ-DQ interaction (35% increase) as in diagram







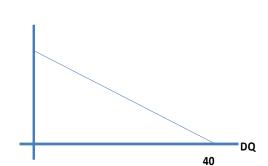


- $ln \mu_{kj} = \alpha_k + \beta_j + \theta_j \gamma_t$ ,
  - $-\alpha_k$ ,  $\beta_i$  as for data sets 1-3,  $\gamma_t$  as for data sets 2&3,
  - $\theta_j$  as in diagram

Accident quarter effect

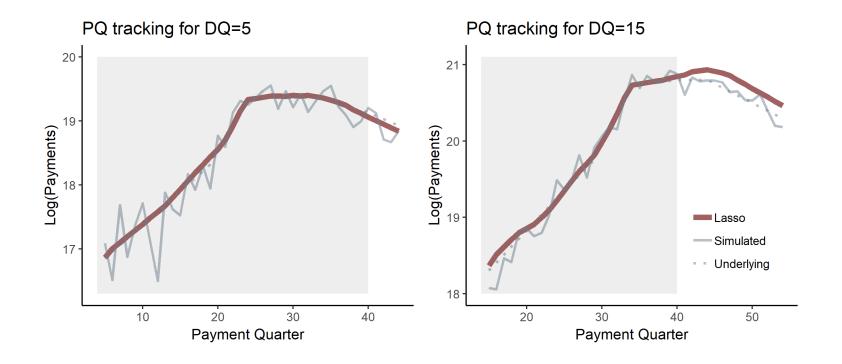


Payment quarter effect

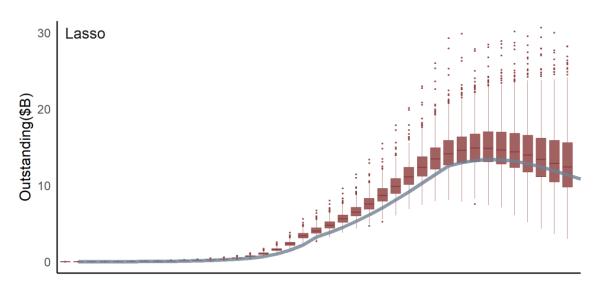


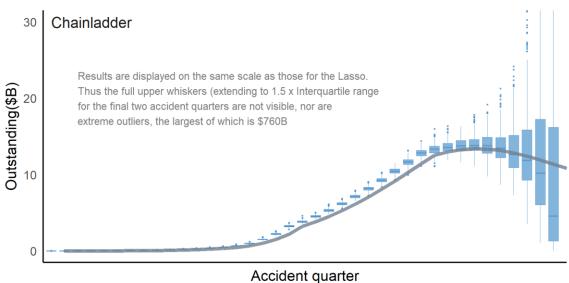
Modification to superimposed inflation











## Outline of presentation

- Loss reserving basics
- Motivation
- Regularised regression and the LASSO
- Case studies
  - Synthetic data
  - Real data
- Discussion
- Conclusions



## Description of the data set

- Motor Bodily injury (moderately long tail)
- (Almost) all claims from one Australian state
  - AQ 1994M9 to 2014M12
  - About 139,000 claims
  - Cost of individual claim finalisations, adjusted to 31
     December 2014 \$
    - Each claim tagged with:
      - Injury severity score ("maislegal") 1 to 6 and 9
      - Legal representation: maislegal set to 0 for unrepresented severity 1 claims
      - Its operational time (OT), proportion of AQ's ultimate number of claims finalised up to and including it



## Known data features

- Collectively, presenters have worked continually with data set for about 17 years
- The Civil Liability Act affected AYs  $\geq 2003$ 
  - Eliminated many small claims
  - Reduced the size of some other small to medium claims
- There have been periods of material change in the rate of claim settlement
- There is clear evidence of superimposed inflation (SI)
  - This has been irregular, sometimes heavy, sometime nonexistent
  - SI has tended to be heavy for smallest claims, and nonexistent for largest claims

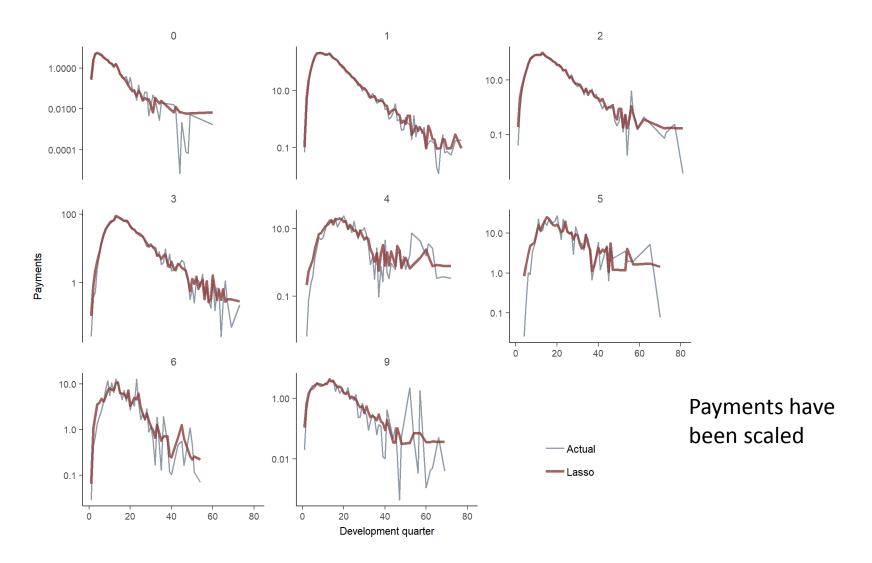


## LASSO Model

- LASSO applied to the data set summarised into quarterly cells
  - This summary is not theoretically essential but reduces computing time
- Basis functions:
  - Indicator function for severity score (maislegal)
  - All single knot linear splines for OT, PQ
  - All 2-way interactions of maislegal\*(OT or PQ spline)
  - All 3-way interactions maislegal\*(AQ\*OT or PQ\*OT Heaviside)
- Model contains 94 terms
  - Average of about 12 per injury severity
- By comparison, the custom-built consultant's GLM included 70 terms
- Forecasts do NOT extrapolate any PQ trend
  - Less collinearity in basis functions used than the synthetic data examples
  - Less potential for misallocation of effects

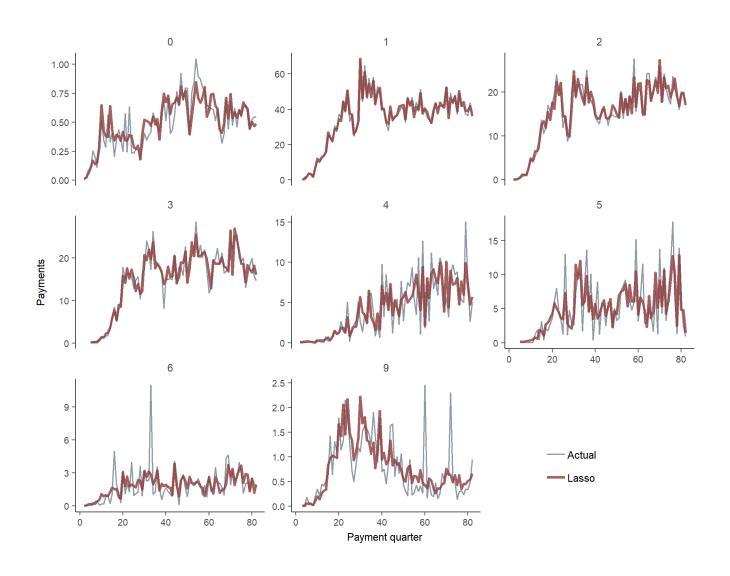


# Actual vs fitted - DQ



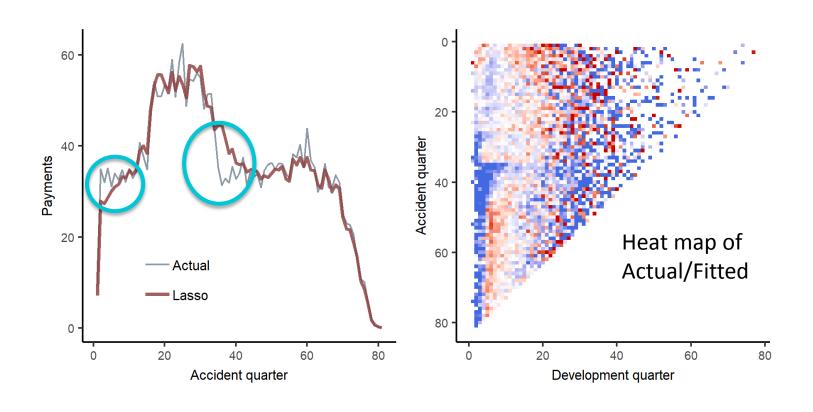


## Actual vs Fitted - PQ





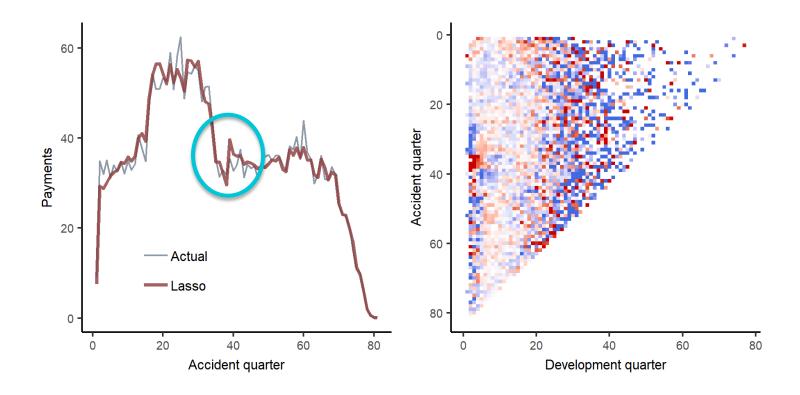
## Model fit by AQ (injury severity 1)





## Model misfit: known data features

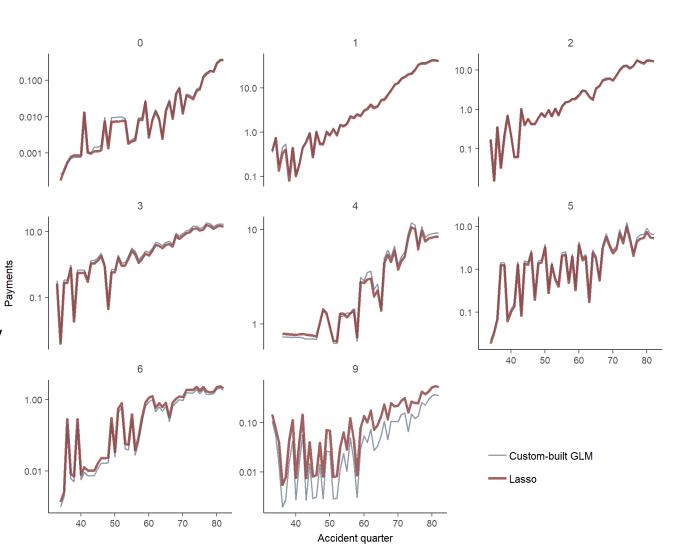
- Failure of fit results from data features that were known in advance
  - Legislative change affecting AQ ≥ 35
- Perverse to ignore it in model formulation
- Introduce a few simple interactions between injury severity, AQ, OT without penalty
  - Brief side investigation required to formulate these
- Model fit considerably improved





## Human vs machine

- Same data set modelled with GLMs for many years as part of consulting assignment
  - Complex GLM with interactions for each injury severity
  - Many hours of skilled consultant's time
- Loss reserves from two sources very similar
  - Note that severity 9 is a small and cheap category
  - Judgemental change in GLM forecast
- BUT consultant's analysis
  - More targeted
  - Less abstract
  - Conveys greater understanding of claim process



## Outline of presentation

- Loss reserving basics
- Motivation
- Regularised regression and the LASSO
- Case studies
  - Synthetic data
  - Real data
- Discussion
- Conclusions



#### Feature selection

- How many covariates out of AQ, DQ, PQ should be included?
  - Usually at least 2
  - But 3 will generate collinearity
    - Enlarges model dimension
    - May cause mis-allocation of model features between among dimensions
    - So caution before introducing 3
- Make use of feature
   selection where features are
   known/strongly suspected

#### Implications for forecasting

- Forecasts depend on future PQ effects
  - Should these be extrapolated?
  - How will forecasts be affected by misallocation?

#### Proposition:

- Consider data set containing DQ and PQ effects but no AQ effect.
- Let M1 denote model containing explicit
   DQ, PQ effects but no AQ effect.
- Let M2 denote identical model except that also contains explicit AQ effects.
- Then, in broad terms, M1 and M2 will generate similar forecasts of future claim experience if each extrapolates future PQ effects at a rate representative of that estimated for the past by the relevant model.



### Interpretability

- Most machine learning models subject to the interpretability problem
  - Model is an abstract representation of the data
  - May not carry an obvious interpretation of model's physical features
  - Physical interpretation usually possible, but requires some analysis for visualisation
  - However, LASSO much more interpretable than a deep learning model



#### Miscellaneous

- Prediction error
  - Bootstrap can be bolted onto LASSO
  - Preference for non-parametric bootstrap
  - Computer-intensive if min CV chosen separately for each replication
    - LASSO for real data
      - 20 minutes without CV
      - 4½ hours with CV
      - Sequential run. Could be speeded up with parallelisation
  - Bootstrap will include at least part of internal model error, but not external model error

#### Model thinning

- Most appropriate distribution provided by LASSO software glmnet is Poisson
- Low significance hurdle
- Reduce number of parameters by applying GLM with gamma error and same covariates as LASSO
- Model performance sometimes degraded, sometimes not
- Bayesian LASSO
  - LASSO can be given a Bayesian interpretation
    - Laplacian prior with  $\lambda$  as dispersion parameter
  - Software (Stan) then selects  $\lambda$  according to defined performance criterion

## Outline of presentation

- Loss reserving basics
- Motivation
- Regularised regression and the LASSO
- Case studies
  - Synthetic data
  - Real data
- Discussion
- Conclusions



### Conclusions (1)

- Objective was to develop an automated scheme of claim experience modelling
- Routine procedure developed
  - Specify basis functions and performance criteria
  - Then model self-assembles without supervision
- Tested against both synthetic and real data, with reasonable success
  - LASSO succeeds in modelling simultaneous row, column and diagonal features that are awkward for traditional claim modelling approaches
- Procedure is applicable to data of any level of granularity



## Conclusions (2)

- Some changes of unusual types may be difficult for an unsupervised model to recognise
  - If these are foreseeable, a small amount of supervision might be added with minimal loss of automation
- Standard bootstrapping can be bolted on for the measurement of prediction error
- As with any form of machine learning, model validation is important



### Questions afterwards?

- Contact:
  - grainne.mcguire@taylorfry.com.au

Paper available at

https://papers.ssrn.com/sol3/papers.cfm?abstract\_id=3241906