

Society of Actuaries in Ireland

Demystifying Data Science Part II

23rd October 2018

Disclaimer

The views expressed in these presentations are those of the presenter(s) and not necessarily of the Society of Actuaries in Ireland

Welcome

- Pedro Ecija Serrano
 Chair, Data Analytics Subcommittee
- Second of a series of three presentations

Disclaimer:

The material, content and views in the following presentation are those of the presenter(s).

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Practical Examples Unsupervised Learning
- Modelling Disciplines
- Practical Examples Supervised Learning
- Honourable Mentions
- Wrap up
- Questions

'Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to **extract knowledge and insights from data** in various forms'

-Wikipedia

Data Science Map: Insurance Industry

Storage Costs

Hard Drive Cost per Gigabyte 1980 - 2009

Computer Speeds

Data Science Tools

Google Trends Keywords 2009 - 2017

Quarter

Is Data an Asset?

2007

World's Largest Companies by Market Capitalization

Exxon Mobil	467
General Electric	394
Microsoft	265
ICBC	259
Citigroup	243
AT&T	238
Royal Dutch Shell	232
Bank of America	230
PetroChina	225
China Mobile	207

Apple	815		
Alphabet	637		
Microsoft	558		
Facebook	485		
Amazon	461		
Berkshire Hathaway	438		
Alibaba	415		
Tencent	394		
Johnson & Johnson	357		
Exxon Mobil	323		

2017

- The ultimate wider field?
- Opportunity to drive revenue growth
 - (e.g. using policyholder-level predictive modelling)
- Opportunity to work in different industries
- Powerful new tools to solve real-world problems
- Already familiar with handling data and building complex models
- CDO Roles
- Superstar salaries for top researchers

Jobs that pay over \$100k

Job title	Average annual salary	Job title Av	erage annual salary
Neurologist	\$217,837	Data scientist	\$135,315
Psychiatrist	\$194,563	Chief financial officer	\$127,887
Anesthesiologist	\$173,694	Android developer	\$120,971
Radiologist	\$168,706	Senior software engineer	\$119,791
Physician	\$165,391	Full stack developer	\$111,709
Dentist	\$157,250	Actuary	\$111,474
Director of product	management \$147,363	Tax manager	\$108,515
Surgeon	\$140,892	Director of business developm	ent \$107,789
Machine learning er	ngineer \$137,332	Architect	\$104,080
Vice president of sa	les \$136,071	Nurse practitioner	\$103,233

indeed

Source: Indeed

Source: Indeed.com, November 2017

Opportunities for Actuaries: Chief Data Officers

Source: VisualCapitalist.com: The Rise of the Chief Data Officer

- Increased competition from data scientists
 - Who have strong computer skills
 - Who have powerful predictive models
 - Strong ability to handle data and extract information from the Company's data
 - Particularly for younger actuaries

- Improve data science skills within each actuarial team
 - Mainly by improving computer skills and learning about machine learning models
- Gain access to open-source data science tools at work
 - Overcome internal challenges to open-source software
 - e.g. the IT department might be reluctant to use new software

- Extract value from their data asset
- Make better data-driven decisions
- Better understanding of risks and opportunities by doing quick, novel analyses of the data
- Streamline operations

- New companies could develop massive structural advantages over incumbents?
- E.g. Amazon have massive structural advantages over traditional retailers

- Python is a high level, general purpose programming language with readable syntax
- R is a statistical programming language designed by statisticians for statisticians
- Both are widely used for data science
- Both have similar market-leading functionality

	Open Source	Closed Source
Source Code	Open	Hidden
Redistributable?	Yes	No
Modifiable?	Yes	No
Licence and Subscription Fees?	No	Yes
Documentation, Helpdesk and Tutorials	Online (Google / Stackoverflow)	Provided by Provider (for a fee)
Responsiveness to bugs and market	Quick to respond	Depends on Provider
Version Control Systems	Available	Depends on Provider

- Fast
- Scalable
- Capable of full automation
- No licencing fees
- Auditability
- Flexibility
- Sustainability
- Easy to find or train developers
- Fast Learning Curve

- Not secure
- Too hard to learn
- No documentation / bad documentation
- Not as good as proprietary software

- It's the standard / well known
- Easier for unskilled users
- Guaranteed support (for a fee)
- Managers prefer buying Software as a Service rather than building own systems?
- Warranties and Indemnity Liability
- Unlikely to become obsolete?

- Expensive
- Restrictive licences
- Lock-in / Capture
- Time-consuming / Hard to learn
- Management Incentives (Planned obsolescence / cash cow)
- Bankruptcy
- Unknown code quality
- Unknown level of security
- No incentive to provide good documentation

Big Data: Datasets that are too big and complex for traditional data processing software

 Need to use new software which can distribute the storage and calculations across different machines

Data Mining is the process of finding patterns and relationships in large datasets

 Goal is to extract valuable understandable information from data

Predictive Analytics is a set of statistical techniques that make predictions about future unknown events

Predictive Models are models which make predictions about future unknown events.

- Using current and historical data
- Allowing for relationships among many factors
- Make predictions about every example in the dataset
- These predictions can be used to guide decision making

Two main types:

- Traditional predictive models
- Machine learning models

Characteristics of traditional predictive models:

- Explainable and interpretable
- Grounded in maths and statistics
- All parameters derived manually using closed form mathematical solutions or simple algorithms
- Lots of manual effort required to build high accuracy models

Machine learning models are predictive models which have the ability to learn from data without being explicitly programmed

Learning = progressively improving performance on a specific task

Characteristics of machine-learning models:

- May be explainable or a black box
- Grounded in computer science
- Most parameters derived automatically using a machine learning algorithm
- Little manual effort required to build high accuracy models

Practical Example: Traditional Predictive Modelling and Machine Learning

How much is a 1000 square foot house?

Linear Regression Predictive Model

Approach 1: Normal Equation

Linear Regression Model:

 $\hat{y} = ax + b = \theta X$

where:

- $\theta = [a \ b]$
- $X = [x \ 1]$

```
theta = (np.linalg.pinv(X.T * X) * X.T) * Y
y_hat = X * theta
```

Choose Loss Function, such as Mean Squared Error

Calculate parameters theta using formula:

 $\theta = (X^T X)^{-1} X^T y$

Approach 1: Linear Regression Predictive Model

Problem with normal equation:

- Only works if matrix is invertible
- Doesn't work on other models
- Doesn't work well on large datasets

Approach 2: Gridsearch

86

113.16

Approach 2: Gridsearch

Machine Learning Models

Accuracy

- Big Data
 - More Data
 - More Computing Power
 - More Analysis
- Computers in Actuarial Work
- A Word on Terminology
- Practical Examples

- Mainframe Systems
- Valuation Software
- Spreadsheets
- A precise answer...
- ... given assumptions
- Computers may be able to 'solve' problems
- Or at least give valuable insights

Example 1 - Four Colour problem solved

- Proved in 1976
- First major theorem proved by computer

- $x^n + y^n = z^n$
- Solved by computer for all primes up to 4,000,000

Correlation and Causation!

Honey producing bee colonies (US) inversely correlates with Juvenile arrests for possession of marijuana (US) Honey producing bee colonies (US) Juvenile arrests for possession of marijuana (US) 3400 -100000colonies 3200 83333.33 3000 - 66666.67 housands of 2800 - 50000 2600 - 33333.33 16666.67 2400 2200 0 03 04 05 06 07 90 91 92 93 94 95 96 97 98 99 00 01 02 08 09

 Honey producing bee colonies (US)
 '90: 3,220; '91: 3,211; '92: 3,045; '93: 2,875; '94: 2,783; '95: 2,655; '96: 2,581; '97: 2,631; '98: 2,637; '99: 2,652; '00: 2,622; '01: 2,550; '02: 2,574; '03: 2,599; '04: 2,554; '05: 2,409; '06: 2,394; '07: 2,443; '08: 2,342; '09: 2,498

 Juvenile arrests for possession of marijuana (US) Arrests (DEA)
 '90: 20,940; '91: 16,490; '92: 25,004; '93: 37,915; '94: 61,003; '95: 82,015; '96: 87,712; '97: 94,046; '98: 91,467; '99: 89,523; '00: 95,962; '01: 97,088; '02: 85,769; '03: 87,909; '04: 87,717; '05: 88,909; '06: 95,120; '07: 97,671; '08: 93,042; '09: 90,927

Correlation: -0.933389

Results always need to be interpreted!

http://tylervigen.com/spurious-correlations

- Actuaries didn't get here first!
- P = A / ä

Periodic Policy Amount = Bounded Risk Benefit / Contribution Vector

- Terminology not intuitive...
- ...concepts are

• Purchasing datasets

	Bread	Milk	Eggs	•••	Yoghurt	Tuna	Fruit
Customer 1	Х						
Customer 2	x	х					х
Customer 3			х			Х	
:		X					
:							
Customer n					Х		

- Very very sparse
- Think of Amazon

- Of interest, what items occur together?
- As a purchasing dataset will have very sparse data, ideas will be illustrated by a medical dataset
- 240 Patients
- 6 Symptoms

• Illustrative dataset

	Symptoms					
	1	2	3	4	5	6
Patient 1					х	
Patient 2		Х		Х		
Patient 3			х	х		х
:	:	:	:	:	:	:
:	:	:	:	:	:	:
Patient 240				Х	Х	
Total	19	157	55	85	58	181

• Less sparse

- Which symptoms occur together?
- Three key concepts...

For symptoms A & B

- 1) Support = $P(A \cap B) = P(A,B)$
- 2) Confidence = P(B|A) = P(A,B) / P(A)
- 3) Lift = P(A,B) / [P(A).P(B)]

Association Rule Mining Result 1

Association Rule Mining Result 2

- Concepts are not difficult
- Terminology and visualisation can be confusing at first
- Basic analysis can be enhanced by adding bounds and standardising results
- Very sophisticated algorithms can be developed but speed is an issue

•No y value, Multiple x values

Supervised Learning

•We do have a y value & multiple x values

- Old Faithful Geyser
- 272 data points on Waiting & Eruption Times

- Old Faithful Geyser
- 272 data points on Waiting & Eruption Times

Resulting Segmentation

• Can be exploratory or detective

Another Grouping (Clustering) Example 1

Height Weight Data

(200 observations)

Another Grouping (Clustering) Example 2

Plot of squared distance against number of clusters

Another Grouping (Clustering) Example 3

Height Weight Clustering Solution

- Accuracy 88%
- 'First pass' result
- Readily implementable
- Methodology generalisable to n dimensions
- Where could this give more insight?
 - Segmentation (Distribution Channel)
 - Any homogeneous group selection
 - Deconstructing portfolios
 - Model point building
 - Outlier identification (Fraud etc.)
 - Trend analysis

Time Series

http://www.rdatamining.com/

- Constructed dataset
- 6 x 100 sub-series

Time Series

	Predicted Group						
		1	2	3	4	5	6
•	1	97	3	0	0	0	0
dno	2	1	99	0	0	0	0
Gr	3	0	0	81	0	19	0
ual	4	0	0	0	63	0	37
Act	5	0	0	16	0	84	0
	6	0	0	0	1	0	99

• Accuracy 87%!

- Accuracy 87%!!!
- Where could this give more insight?
 - Claim rates
 - Seasonal / Selection Effects
 - Investment performance analysis
 - Stochastic model analysis
 - Trend analysis

- Can help identify patterns in data
- Can help identify homogeneous groups
- Using computer power
- Relatively unsophisticated
- Possible to get answers quickly
- Perfect insight not possible
- Improved understanding may result

Cross Validation

- Should models be built on all data?
- Building and fitting on the same data, a good idea?
- But should we fit on a Training subset and Test on the remainder?
- This is Cross Validation
- →With a proposed model, exists in different forms
- 1. 75% Training, 25% Test
- 2. 10-fold validation 90% Training, 10% Test repeated x 10
- 3. Leave one out validation All bar one **Training**, one **Test** x n
- →With competing models
- 1. 50% Training, 25% Validation, 25% Test

- We propose a model...
- ...as opposed to just looking for patterns in the data
- Simple linear regression is a supervised learning method
- Many different models exist
- Can all be used for prediction
- Data accuracy as much an issue in analytics as in other actuarial work

Note:Examples are illustrative. They should not be taken to imply that any one technique is preferable to another or suitable for a particular situation

Analysis of Survival Statistics Titanic (R)

Survived

Model to be fitted

- P(Survived) = $\frac{\exp(\alpha + \beta_P P C lass + \beta_S S e x + ...)}{1 + e x p (\alpha + \beta_P P C lass + \beta_S S e x + ...)}$
- Ensures P(Survived) falls between 0 and 1

• Sample output

```
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)
            15.177420 621.502737
                                 0.024
                                        0.98052
Pclass2
            -0.655760
                     0.287176 -2.283 0.02240 *
Pclass3
           -1.865384 0.287024 -6.499 8.08e-11 ***
                                               ***
Sexmale
           -2.719417 0.199488 -13.632 < 2e-16
           -0.016693 0.005530 -3.019 0.00254
Age
                                               **
           -0.273558 0.102416 -2.671 0.00756 **
SibSp
Parch
     -0.056490 0.115601 -0.489 0.62508
Fare
         0.002932 0.002474 1.185 0.23591
EmbarkedC -12.091459 621.502712 -0.019 0.98448
EmbarkedQ -12.395355 621.502774 -0.020
                                       0.98409
FmbarkedS
           -12.523889 621.502698 -0.020
                                        0.98392
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```


We now have a series of probabilities for each individual
 Predicted probabilities of Survival

Passengerld

- But we need an absolute prediction (1/0)
- Find value τ such that
 - prob > τ , predict survive
 - prob < τ , predict not survive

• Consider table

		Prediction Not Survive	Prediction Survive
Truth	Not Survive	True Negative (TN)	False Positive (FP)
Truth	Survive	False Negative (FN)	True Positive (TP)

- True Positive Rate(TPR): TP / (TP + FN)
 - Of those that did survive, how many are classified correctly?
- False Positive Rate(FPR): FP / (FP + TN)
 - Of those that did not survive, how many are classified wrongly?

- Plot TPR against FPR for various values of τ
- ROC (Receiver Operator Characteristic) graph shown below

• Select τ = 0.553 where TPR + (1-FPR) is maximised

• This then gives us the following summary

		Prediction Not Survive	Prediction Survive
Truth	Not Survive	498	114
Truth	Survive	51	228

• And an accuracy of 81.5% (498+228) / (498+228+51+114)

Logistic Regression 7

• We've fitted a model to give probabilities of survival

• P(Leonardo survives) = 0.1

- P(Kate survives) = 0.9
- We've then looked to find a single value above which we predict survival and below which we don't predict survival

• Recursive partitioning

- Accuracy = 79.7%
- Greedy algorithm
- Can overfit

Classification (Decision) Trees 2 – US Elections

Decision Tree: The Obama-Clinton Divide

Random Forests 1

- Essentially multiple decision trees
- Analogy is between a single decision tree (~Dictator)
- Multiple decision trees (~Democracy)
- Wisdom of crowds

Random Forest Simplified

- Random Forests build on subsets of the data
- This introduces greater diversity
- This seems counter-intuitive
- But it's compensated for building multiple branches
- Generally greatly increases performance but at the expense of interpretability
- Require some caution in practical use

Random Forests 3 – Example

	Class	Alcohol	Alcalinity	 Phenols	Proline
Sample 1	1				
Sample 2	2				
Sample 3	1				
:					
:					
Sample 178					

- Three classes of wine
- 13 measurements on each wine subsets of the data
- Let's compare a single classification tree against a random forest

• Single Decision Tree

Random Forest Sample Trees

- Single Tree 93.8%
- Random Forest 97.8%
- Generally get a significant boost to performance
- ...but at the expense of interpretability

• Results from different (weak) models can be polled to combine into a stronger model

Source: Deloitte Team Presentation for SAI Titanic Competition

- Boosting works to give misclassified observations greater weight
- Analogous to weighted regression

- Can lead to overfitting particularly if there is bad data
- Generally get a significant boost to performance

Support Vector Machines 1

- With clearly separated data, support vectors are clear
- Any classification method would work well
- Life is rarely this simple!

Support Vector Machines 2

- How would we proceed here?
- Data is clearly separable but not linearly
- Move to a higher plane

Support Vector Machines 3

• Data is now linearly separable

- Spam dataset from HP
- 4,601 e-mails with 57 variables giving frequency of certain words and characters
- Build (train) competing models on a random 50% of the data
- Measure performance on remaining 50%
- Decision Tree 89.0% accuracy
- Support VM 93.0% accuracy

Comparing Algorithms

- Discipline of **Test** and **Training** data
- Logistic Regression Suitable for binary classification
- Decision Trees Can be improved with boosting
- Random Forests can improve performance but can be opaque
- Support Vector Machines can help with data which is not easily separable
- All models are readily implementable in most data science packages
- Neural Networks for another day

- Primarily Numeric
- Visualisation
- Principal Component Analysis / Factor Analysis
- Twitter / Sentiment Analysis
- Outlier Detection
- Text mining / Word clouds
- Social Network Analysis
- Bayesian approaches
- Neural networks

Questions

• Thank you!