

Society of Actuaries in Ireland

Python-implemented Techniques for Reading the 'Tea Leaves' of Past Investment Performance & Risk Management of Funds

by John Caslin and Dave Kavanagh

10 October 2018

The views expressed in this presentation are those of the presenters and not necessarily of the Society of Actuaries in Ireland

Why Python?

- Closer to how you think
- Faster to build
- Less scope for error
- More flexible
- Wide range of libraries
- Shallow learning curve

import pandas as pd
import numpy as np

fund_a_prices = pd.read_excel('P:/Paper with John Caslin/Fund A.xlsx')
fund_b_prices = pd.read_excel('P:/Paper with John Caslin/Fund B.xlsx')
exchange_rates = pd.read_excel('P:/Paper with John Caslin/Exchange rates.xlsx')

all_prices = fund_b_prices.merge(exchange_rates, on = 'Date', how = 'inner')
all_prices['B price euro'] = all_prices['B price'] / all_prices['Exchange']

fund_a_prices['Date'] = pd.to_datetime(fund_a_prices['Date'], format = '%Y%m%d')
all_prices = all_prices.merge(fund_a_prices, on = 'Date', how = 'left')
all_prices.sort_values(by = 'Date', ascending = True, inplace = True)
all_prices['A price'].fillna(method = 'ffill', inplace = True)

all_prices['A return'] = np.log(all_prices['A price']) - np.log(all_prices['A price'].shift(1))

```
fund = 'A'
roll_days = 10
mean_column = fund + ' rolling ' + str(roll_days) + '-day mean'
std_column = fund + ' rolling ' + str(roll_days) + '-day standard deviation'
all_prices[mean_column] = all_prices[return_column].rolling(roll_days).mean()
all_prices[std_column] = all_prices[return_column].rolling(roll_days).std()
```



```
for fund in ['A', 'B']:
    return_column = fund + ' return'
    for roll_days in [5, 10, 20, 40]:
        mean_column = fund + ' rolling ' + str(roll_days) + '-day mean'
        std_column = fund + ' rolling ' + str(roll_days) + '-day standard deviation'
        all_prices[mean_column] = all_prices[return_column].rolling(roll_days).mean()
        all prices[std_column] = all_prices[return_column].rolling(roll_days).std()
```


Three Funds

IGC Bond Fund

- Fixed income
- Investment grade
- Global universe
- Currency risk
- Derivatives for Efficient Portfolio Management

European Equity Fund

- Equities of companies domiciled in or with significant operations in Continental Europe
- Highly-concentrated portfolio
- Derivatives for Efficient Portfolio Management

Multi-Asset Fund

- At least 50% in investment-grade government & corporate bonds and high yield bonds
- At most 20% in equities
- Any balance in cash and money market instruments.
- Derivatives for leverage of up to 2x NAV

Three Funds

Investment Objective

Do not target a specific return

Risk Objective

Do not target a specific risk level

Fund	Start Date of NAV Prices	End Date of NAV Prices	Length of Track Record (Number of Daily Returns)
IGC Bond	15/09/2003	12/03/2018	3,780
European Equity	01/06/2007	09/04/2018	2,743
Multi-Asset	20/04/2007	08/09/2018	2,751

Data

Data Set Format

- Date
- Net Asset Value ("NAV")

Daily Data Tests

- Number of days between pricing dates
- Maximum, average, and standard deviation

Sample

Representative of time period

- Awareness of the time period of the sample
- Historic bull-runs or bear markets in the asset class

Range of Statistics Covered in the Presentation

V.

in the Paper and the Programs

Return Statistics

Return Statistics

- Annualised returns
- Empirical PDF of daily returns
- Empirical plot of ordered pairs
- Number of days accounting for 90% of return
- Percentages of +ve and -ve returns
- Average +ve and -ve daily return
- Omega ratio
- Rolling rates of return

Annualised Rates of Return

Only two data points used

Empirical PDF of Daily Returns

European Equity Fund

Return

Empirical plot of ordered pairs

European Equity Fund

Return Statistics

Fund	Percentage of Positive Daily Returns	Average Positive Daily Return (bps)	Percentage of Negative Daily Returns	Average Negative Daily Return
IGC Bond	45.0%	19.07	33.5%	-19.74
European Equity	54.2%	71.73	45.2%	-81.41
Multi-Asset	50.0%	18.62	34.4%	-19.01

Return Statistics

Fund	Percentage of Days Accounting for 90% of Total Return
IGC Bond	3.3%
European Equity	0.5%
Multi-Asset	4.1%

Implications for market-timing strategies

IGC Bond Fund Daily returns from lowest to highest

European Equity Fund Daily returns from lowest to highest

Fund	Omega Ratio		
IGC Bond	1.295		
European Equity	1.057		
Multi-Asset	1.423		

Rolling Rates of Return

75% of rolling 1-year annualised returns are positive

Rolling Rates of Return

Assess Performance v. Objective Analysis of Different Time-cohorts

Not Independent

Rolling Rates of Return

European Equity Fund - Rolling annualised 3-year returns

92% of rolling 3-year annualised returns are positive

Risk Statistics

Risk Statistics

- Annualised standard deviation of returns
- Skewness of returns
- Kurtosis of returns
- Extreme standardised daily returns
- Maximum peak-to-trough fall in value
- Rolling 20-day volatility

Annualised Standard Deviation

of Daily Returns

Skewness of Daily Returns

Empirical CDF of Daily Returns

Multi-Asset Fund

Return (bps)

Empirical plot of ordered pairs

Multi-Asset Fund

Standardised Returns Below

Mean

Excess Kurtosis of Daily Returns

Kurtosis
$$(r_1, ..., r_n) = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^n \left(\frac{r_i - \bar{r}}{\sigma}\right)^4 - \frac{3(n-1)^2}{(n-1)(n-3)}$$

Maximum Peak-to-trough Fall in Value

Maximum Peak-to-trough Fall in Value

Rolling 20-day Volatility (annualised)

Multi-Asset Fund

Date

Rolling 20-day Volatility (annualised)

Has the Risk Objective been achieved?

Extent of Variation in Volatility

Assessment of Quality of Risk Management Driver of Peakto-trough Falls in Value

Fees

Fees

Fund (1)	Fees (2)	Realised Volatility (3)	Estimated Long- term Sharpe Ratio (4)	Expected Long-term Return (5)=(3)*(4)	Fees as a Percentage of Expected Return (6)
IGC Bond	0.49%	3.5%	0.4	1.4%	35%
European Equity	0.83%	16.9%	0.4	6.8%	12%
Multi-Asset	0.92%	3.8%	0.5	1.9%	48%

Conclusion

Why Python? Only a sample of the Paper, programs, statistics and data sets EdX DataCamp

Society of Actuaries in Ireland

Thank you for your attention

10 October 2018