

Society of Actuaries in Ireland

Demystifying Data Science

19th September 2018

The views expressed in these presentations are those of the presenter(s) and not necessarily of the Society of Actuaries in Ireland

Welcome

- Pedro Ecija Serrano
 Chair, Data Analytics Subcommittee
- First of a series of three presentations

Disclaimer:

The material, content and views in the following presentation are those of the presenter(s).

Demystifying Data Science

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Buzzwords
- Example: Machine Learning Model
- Practical Examples

What is Data Science?

"Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to **extract knowledge and insights from data** in various forms"

-Wikipedia

What is Data Science?

"Data science is the study of how to make data-driven decisions"

What is Data Science?

7

The more data you have, The better your decisions should be

Data Science Map Industry Knowledge Data Science Maths/ Computer **Statistics** Science

Demystifying Data Science

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Buzzwords
- Example: Machine Learning Model
- Practical Examples

Data Storage Costs Hard Drive Cost per Gigabyte 1980 - 2009 \$10,000,000.00 \$1,000,000.00 \$100,000.00 \$10,000.00 \$1,000.00 \$100.00 \$10.00 \$1.00 \$0.10 \$0.01 205 1960 1990 19⁶⁰ 00 210

Digitalization

Number of Wifi-Connected Devices

Connected Devices

Source: Gartner, IDC, Strategy Analytics, Machine Research, company filings, Bil estimates (http://forecastjoy.com/wp-content/uploads/2014/03/deviceforecast.png)

Computer Speeds

Data Science Tools

Google Trends Keywords 2009 - 2017

Quarter

Machine Learning

Is Data an Asset?

World's Largest Companies by Market Capitalization

Exxon Mobil	467
General Electric	394
Microsoft	265
ICBC	259
Citigroup	243
AT&T	238
Royal Dutch Shell	232
Bank of America	230
PetroChina	225
China Mobile	207

Apple	815	
Alphabet	637	
Microsoft	558	
Facebook	485	
Amazon	461	
Berkshire Hathaway	438	
Alibaba	415	
Tencent	394	
Johnson & Johnson	357	
Exxon Mobil	323	

2007

Why is it a Big Deal Now?

Q: Is data an asset? A: Yes

Q: How can companies extract value from their data?

A: Data Science

Q: Who will actually analyse this data?A: Data Scientists

Demystifying Data Science

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Buzzwords
- Example: Machine Learning Model
- Practical Examples

Traditional Actuarial Process

Opportunities for Actuaries (1)

- Streamline your processes using open-source data science tools
 - Improve efficiency and reduce time costs
 - Reduced risk of manual error
 - Spend time on value-added work rather than manual labour

Opportunities for Actuaries (2)

- The ultimate wider field?
- Opportunity to drive revenue growth
 - (e.g. using policyholder-level predictive modelling)
- Opportunity to work in different industries
- Powerful new tools to solve real-world problems
- Already familiar with handling data and building complex models
- CDO Roles
- Superstar salaries for top researchers

Jobs that pay over \$100k

Job title	Average annual salary	Job title	Average annual salary	
Neurologist	\$217,837	Data scientist	\$135,315	
Psychiatrist	\$194,563	Chief financial officer	\$127,887	
Anesthesiologist	\$173,694	Android developer	\$120,971	
Radiologist	\$168,706	Senior software engineer	\$119,791	
Physician	\$165,391	Full stack developer	\$111,709	
Dentist	\$157,250	Actuary	\$111,474	
Director of product ma	anagement \$147,363	Tax manager	\$108,515	
Surgeon	\$140,892	Director of business develop	ment \$107,789	
Machine learning engi	neer \$137,332	Architect	\$104,080	
Vice president of sales	\$136,071	Nurse practitioner	\$103,233	

Source: Indeed

Source: Indeed.com, November 2017

Opportunities for Actuaries: Chief Data Officers

Source: VisualCapitalist.com: The Rise of the Chief Data Officer

Threats for Actuaries

- Increased competition from data scientists
 - Who have strong computer skills
 - Who have powerful predictive models
 - Strong ability to handle data and extract information from the Company's data
 - Particularly for younger actuaries

- Improve data science skills within each actuarial team
 - Mainly by improving computer skills and learning about machine learning models
- Gain access to open-source data science tools at work
 - Overcome internal challenges to open-source software
 - e.g. the IT department might be reluctant to use new software

Opportunities for Companies

- Extract value from their data asset
- Make better data-driven decisions
- Better understanding of risks and opportunities by doing quick, novel analyses of the data
- Streamline operations

Threats for Companies

- New companies could develop massive structural advantages over incumbents?
 - E.g. Amazon have massive structural advantages over traditional retailers

Demystifying Data Science

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Buzzwords
- Example: Machine Learning Model
- Practical Examples

- Python is a high level, general purpose programming language with readable syntax
- R is a statistical programming language designed by statisticians for statisticians
- Both are widely used for data science
- Both have similar market-leading functionality

Trends

Google Trends Keywords 2009 - 2017

36

Open-Source

Open-source software:

Users have the ability to:

- Run
- Study
- Modify
- Improve
- Copy
- Distribute to anyone and for any purpose
The Python Data Science Stack

- Programming Language
- sciPy Numerical and scientific calculations
- **pandas** $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

matpletlib

learn

TensorFlow PYTORCH

K Keras

n python

NumPy

- Organising data, merging data, doing calculations
- Graphs
- Big Data
- Machine learning
- Artificial intelligence and ultra-fast calculations

Open Source vs Closed Source

	Open Source	Closed Source
Source Code	Open	Hidden
Redistributable?	Yes	No
Modifiable?	Yes	No
Licence and Subscription Fees?	No	Yes
Documentation, Helpdesk and Tutorials	Online (Google / Stackoverflow)	Provided by Provider (for a fee)
Responsiveness to bugs and market	Quick to respond	Depends on Provider
Version Control Systems	Available	Depends on Provider

Open-Source Advantages

- Fast
- Scalable
- Capable of full automation
- No licencing fees
- Auditability
- Flexibility
- Sustainability
- Easy to find or train developers
- Fast Learning Curve

Open-Source Misconceptions

- Not secure
- Too hard to learn
- No documentation / bad documentation
- Not as good as proprietary software

Closed Source Advantages

- It's the Standard / Well Known
- Easier for Unskilled Users
- Guaranteed Support (for a fee)
- Managers prefer buying Software as a Service rather than building own systems?
- Warranties and Indemnity Liability
- Unlikely to Become Obsolete?

Closed Source Risks

- Expensive
- Restrictive licences
- Lock-in / Capture
- Time-consuming / Hard to learn
- Management Incentives (Planned obsolescence / cash cow)
- Bankruptcy
- Unknown code quality
- Unknown level of security
- No incentive to provide good documentation

Demystifying Data Science

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Buzzwords 🔶
- Example: Machine Learning Model
- Practical Examples

Data Science Process : Buzzwords

Big Data

Big data: data sets that are too big and complex for traditional data processing software

Need to use new software which can distribute the storage and calculations across different machines

Exploratory Data Analysis

EDA: Analyzing data sets to find their main characteristics

Data Mining

Data Mining is the process of finding patterns and relationships in large datasets

Goal = to extract valuable understandable information from data

Business Intelligence and Management Information

Analyzing data and presenting information to help executives make informed business decisions

Statistics vs Predictive Analytics vs Machine Learning

Statistics is about data:

Collection

- Organisation
- Analysis
- Interpretation
- Presentation

Predictive Analytics

Predictive Analytics is a set of statistical techniques that make predictions about future unknown events

For example:

- Data mining
- Traditional predictive models
- Machine learning models

Predictive Modelling

Predictive models are models which make predictions about future unknown events.

- Using current and historical data
- Allowing for relationships among many factors
- Make predictions about every example in the dataset
- These predictions can be used to guide decision making

Predictive Modelling

Two main types:

- Traditional predictive models
- Machine learning models

Traditional Predictive Models

Characteristics of traditional predictive models:

- Explainable and interpretable
- Grounded in maths and statistics
- All parameters derived manually using closed form mathematical solutions or simple algorithms
- Lots of manual effort required to build high accuracy models

Machine Learning Models

Machine learning models are predictive models which have the ability to learn from data without being explicitly programmed

Learning = progressively improving performance on a specific task

Machine Learning Models

Characteristics of machine-learning models:

- Automatic
- May be explainable or a black box
- Grounded in computer science
- Most parameters derived automatically using a machine learning algorithm
- Little manual effort required to build high accuracy models

ML Models

Digital Photos

			157	153	174	168	150	152	129	151	172	161	155	156	157	153	174	168	150	152	129	151	172	161	155	18
Γ			155	182	163	74	75	62	33	17	110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	1
	I		180	180	50	14	34	6	10	33	48	106	159	181	180	180	50	14	34	6	10	33	48	106	159	1
	ľ		206	109	5	124	131	111	120	204	166	15	56	180	206	109	5	124	131	111	120	204	166	15	56	1
			194	68	137	251	237	239	239	228	227	87		201	194	68	137	251	237	239	239	228	227	87	п	2
			172	105	207	233	233	214	220	239	228	98	74	206	172	105	207	233	233	214	220	239	228	98	74	2
			188	88	179	209	185	215	211	158	139	75	20	169	188	88	179	209	185	215	211	158	139	75	20	ŀ
			189	97	165	84	10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	14
			199	168	191	193	158	227	178	143	182	105	36	190	199	168	191	193	158	227	178	143	182	106	36	ī
			205	174	155	252	236	231	149	178	228	43	95	234	205	174	155	252	236	231	149	178	228	43	95	2
			190	216	116	149	236	187	85	150	79	38	218	241	190	216	116	149	236	187	86	150	79	38	218	2
			190	224	147	108	227	210	127	102	36	101	255	224	190	224	147	108	227	210	127	102	36	101	255	2
	I		190	214	173	66	103	143	95	50	2	109	249	215	190	214	173	66	103	143	96	50	2	109	249	2
			187	196	235	75	1	81	47	0	6	217	255	211	187	196	235	75	1	81	47	0	6	217	255	2
			183	202	237	145	0	0	12	108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	2
			195	206	123	207	177	121	123	200	175	13	96	218	196	206	123	207	177	121	123	200	175	13	96	21
																										_

Digital Photos are stored as arrays of numbers

- Digital Audio files are stored as a time series of arrays
- Each array contains information on pitch and loudness

Source: ch.mathworks.com

Digital Text

- Can be converted to vectors of numbers
 - Glove
 - Word2Vec
 - Word Embeddings

Source: ch.mathworks.com

General Examples of Predictive Models

Self-Driving Cars	Speech-to-text	Fraud Detection	Sales Forecasting					
Game Playing	Machine translation	Pricing	Anti-Money Laundering					
Reducing Electricity Costs	Chatbots	Credit Risk	Call-Centre Routing					
Analysing Satellite Photos	Recommender Systems	Customer Retention	Sentiment Analysis					
Reading X-rays	Text-to-Speech	Proxy Models	Geographic Analysis					

• The model tries to predict what words a human translator would use

• The model takes the picture and predicts what the caption should be

Model predicts what a good driver would do in the current circumstances

Example: Fraud Detection

The model will predict whether each incoming claim is fraudulent or non-fraudulent

General Examples of Predictive Models

Self-Driving Cars	Speech-to-text	Fraud Detection	Sales Forecasting					
Game Playing	Machine translation	Pricing	Anti-Money Laundering					
Reducing Electricity Costs	Chatbots	Credit Risk	Call-Centre Routing					
Analysing Satellite Photos	Recommender Systems	Customer Retention	Sentiment Analysis					
Reading X-rays	Text-to-Speech	Proxy Models	Geographic Analysis					

Demystifying Data Science

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Buzzwords
- Example: Machine Learning Model
- Practical Examples
Practical Example: Traditional Modelling and Machine Learning

How much is a 1000 square foot house?

Eyeball approach: Around €90k

Linear Regression Predictive Model

75

Approach 1: Normal Equation

Linear Regression Model:

 $\hat{y} = ax + b = \theta X$

where:

- $\theta = [a \ b]$
- $X = [x \ 1]$

theta = (np.linalg.pinv(X.T * X) * X.T) * Y
y_hat = X * theta

Choose Loss Function, such as Mean Squared Error

Calculate parameters theta using formula:

 $\theta = (X^T X)^{-1} X^T y$

Linear Regression Predictive Model

77

Approach 1: Normal Equation

Problem with normal equation:

- Only works if $X^T X$ is invertible
- Doesn't work on other models
- Doesn't work well on large datasets

Point with minimum MSE:

	86
Slopes	113.16
Intercepts	-11,052.63
MSE	261,059,459.22

Point with minimum MSE:

	128
Slopes	106.32
Intercepts	-4,736.84
MSE	258,939,860.54

- Problem with gridsearch: Very inefficient
 - Only works for models with a handful of parameters

84

- 1. You don't know the slope and intercept, so randomly choose them
- 2. Therefore you start at a random point
- 3. Calculate the slope of the MSE loss surface at that point
- 4. Take a step downhill
- 5. Repeat 3 and 4 until you reach the lowest point on the loss surface

Approach 3: Stochastic Gradient Descent

SGD gives exact same answer as Normal Equation in this example

SGD: Python Code

```
a = Variable(torch.ones(1,1), requires grad=True)
   b = Variable(torch.ones(1,1), requires grad=True)
 2
 3
 4
    optimizer = torch.optim.SGD([a, b],lr=0.0001) # Use SGD machine-learning algorithm
 5
    loss fn = torch.nn.MSELoss()
                                                  # Use Mean-Squared-Error loss metric
 6
   for i in range(50000):
                                                   # Take 50k steps downhill
      ▶ y hat = a*x + b
                                                   # Model
       loss = loss_fn(y_hat, y)
                                                   # Calculate MSE for this particular model
        optimizer.zero grad()
10
       loss.backward()
11
                                                   # Calculate slope of loss surface
                                                   # Step downhill
        optimizer.step()
12
```

Approach 3: Stochastic Gradient Descent

SGD: Cubic Polynomial

```
a = Variable(torch.ones(1,1), requires grad=True)
   b = Variable(torch.ones(1,1), requires grad=True)
 2
   c = Variable(torch.ones(1,1), requires grad=True)
 3
    d = Variable(torch.ones(1,1), requires grad=True)
 4
 5
    optimizer = torch.optim.SGD([a, b, c, d], lr=0.0001) # Use SGD machine-learning algorithm
 6
    loss fn = torch.nn.MSELoss()
                                              # Use Mean-Squared-Error loss metric
 7
 8
                                        # Take 100k steps downhill
   for i in range(100000):
 9
       y hat 2 = a*x**3 + b*x**2 + c*x + d # Model
       loss = loss fn(y hat 2, y)
                                              # Calculate MSE for this particular model
        optimizer.zero grad()
12
       loss.backward()
                                               # Calculate slope of MSE loss surface
13
        optimizer.step()
                                               # Step downhill
14
```

SGD: Cubic Polynomial

89

SGD: Exponential Model

```
a = Variable(torch.ones(1,1), requires grad=True)
 1
   b = Variable(torch.ones(1,1), requires_grad=True)
 2
 3
 4
   optimizer = torch.optim.SGD([a, b],lr=0.0001) # Use SGD machine-learning algorithm
   loss fn = torch.nn.MSELoss()  # Use Mean-Squared-Error loss metric
 5
 6
   for i in range(50000):
                            # Take 50k steps downhill
 7
       y_hat_2 = a*np.exp(x) + b # Model
 8
       loss = loss fn(y hat 2, y) # Calculate MSE for this particular model
 9
       optimizer.zero_grad()
10
       loss.backward()
11
                                     # Calculate slope of MSE loss surface
                                     # Step downhill
       optimizer.step()
12
```

SGD: Exponential Curve

SGD: Exponential Plus Cubic Model

```
a = Variable(torch.ones(1,1), requires_grad=True)
 1
    b = Variable(torch.ones(1,1), requires grad=True)
 2
 3
 4
    optimizer = torch.optim.SGD([a, b],lr=0.0001) # Use SGD machine-learning algorithm
    loss fn = torch.nn.MSELoss()
                                                   # Use Mean-Squared-Error loss metric
 5
 6
                                                   # Take 100k steps downhill
 7
    for i in range(100000):
        y hat 2 = a*np.exp(x) + b*x**3
                                                   # Model.
 8
9
        loss = loss fn(y hat 2, y)
                                                   # Calculate MSE for this particular model
        optimizer.zero grad()
10
        loss.backward()
                                                   # Calculate slope of MSE loss surface
11
        optimizer.step()
                                                   # Step downhill
12
```

SGD: Exponential Plus Cubic Model

SGD: Sine Regression

```
a = Variable(torch.ones(1,1), requires_grad=True)
1
   b = Variable(torch.ones(1,1), requires_grad=True)
2
З
   optimizer = torch.optim.SGD([a, b], lr=0.0001) # # Use SGD machine-learning algorithm
4
   loss fn = torch.nn.MSELoss()  # Use Mean-Squared-Error Loss metric
5
6
                           # Take 50k steps downhill
7
   for i in range(50000):
       y hat 2 = a^*np.sin(x) + b \# Model
8
       loss = loss_fn(y_hat_2, y) # Calculate MSE for this particular model
9
       optimizer.zero grad()
10
       loss.backward()
                                     # Calculate slope of MSE loss surface
11
       optimizer.step()
                                     # Step downhill
12
```

SGD: Python Code

SGD: Mathematical Background

$$MSE = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (ax_i + b - y_i)^2$$

Calculate the partial derivative of the loss function with respect to each of its parameters. This tells you the slope of the loss surface wrt each of parameters.

$$\frac{\partial MSE}{\partial a} = \frac{1}{m} \sum_{i=1}^{m} (ax_i + b - y_i)x_i$$
$$\frac{\partial MSE}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (ax_i + b - y_i)$$

Then move towards the lowest point on the loss surface by taking small steps downslope.

- If the slope is positive, reduce the parameter.
- If the slope is negative, increase the parameter.

SGD: Python Code

```
a = Variable(torch.ones(1,1), requires grad=True)
 1
    b = Variable(torch.ones(1,1), requires grad=True)
 2
 3
   optimizer = torch.optim.SGD([a, b],lr=0.0001) # Use SGD machine-learning algorithm
 4
                                                  # Use Mean-Squared-Error loss metric
    loss fn = torch.nn.MSELoss()
 5
 6
 7
    for i in range(50000):
                                                   # Take 50k steps downhill
        y hat = a*x + b
 8
                                                   # Model
        loss = loss fn(y hat, y)
                                                   # Calculate MSE for this particular model
 9
        optimizer.zero_grad()
10
        loss.backward()
11
                                                   # Calculate slope of loss surface
        optimizer.step()
                                                   # Step downhill
12
```

Benefits of SGD

- It is straightforward to calibrate predictive models
- You can build models with thousands of parameters
 - Can work on huge data sets
 - Can achieve human-level accuracy
- You can build models for all different types of data
 - Pictures
 - Videos
 - Audio
 - Text
 - Policyholder datafiles

Benefits of SGD

- It works very well in practice
 - You can choose models which are a good fit to the data
 - Rather than choosing models which you are able to fit to the data

Machine Learning Models

Neural Network Models

Backfed Input Cell

Input Cell

A mostly complete chart of Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Deep Feed Forward (DFF)

Machine Learning Models in Scikit-Learn

102

Demystifying Data Science

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Buzzwords
- Example: Machine Learning Model
- Practical Examples

Practical Examples – Getting started

- Big Data
 - More Data
 - More Computing Power
 - More Analysis
- Computers in Actuarial Work
- A Word on Terminology
- Association Rule Mining
- Unsupervised Learning

- Mainframe Systems
- Valuation Software
- Spreadsheets
- A precise answer...
- ...given assumptions
- Computers may be able to 'solve' problems
- Or at least give valuable insights

Example 1 - Four Colour problem solved

- Proved in 1976
- First major theorem proved by computer

•
$$x^n + y^n = z^n$$

Solved by computer for all primes up to 4,000,000

Number people who drowned by falling into a swimming-pool correlates with Number of films Nicolas Cage appeared in

Results always need to be interpreted!

http://tylervigen.com/spurious-correlations

A word on Terminology

- Actuaries didn't get here first!
- P = A / ä

Periodic Policy Amount = Bounded Risk Benefit / Contribution Vector

- Terminology not intuitive...
- ...concepts are

This presentation

- Association Rule Mining (Amazon, Tesco)
- Unsupervised Learning
 - Letting the data tell its own story

Next presentation

- Supervised Learning
 - Where we propose a model

Final presentation

• Deep Learning (Neural Nets)

• Purchasing datasets

	Bread	Milk	Eggs	•••	Yoghurt	Tuna	Fruit
Customer 1	Х						
Customer 2	Х	х					Х
Customer 3			х			Х	
:		х					
:							
Customer n					х		

- Very very sparse
- Think of Amazon

- Of interest, what items occur together?
- As a purchasing dataset will have very sparse data, ideas will be illustrated by a medical dataset
- 240 Patients
- 6 Symptoms

Illustrative dataset

	Symptoms					
	1	2	3	4	5	6
Patient 1					x	
Patient 2		х		Х		
Patient 3			х	Х		X
:	:	:	•	:	:	:
:	:	:	:	:	:	:
Patient 240				х	х	
Total	19	157	55	85	58	181

• Less sparse

- Which symptoms occur together?
- Three key concepts...

For symptoms A & B

- 1) Support = $P(A \cap B) = P(A,B)$
- 2) Confidence = P(B|A) = P(A,B) / P(A)
- 3) Lift = P(A,B) / [P(A).P(B)]

Scatter plot for 23 rules

- Concepts are not difficult
- Terminology and visualisation can be confusing at first
- Basic analysis can be enhanced by adding bounds and standardising results
- Very sophisticated algorithms can be developed but speed is an issue

~~___~~

Unsupervised Learning

• No y value, Multiple x values

Supervised Learning

• We do have a y value & multiple x values

- Old Faithful Geyser
- 272 data points on Waiting & Eruption Times

- Old Faithful Geyser
- 272 data points on Waiting & Eruption Times

• Resulting Segmentation

• Can be exploratory or detective

Height Weight Data

(200 observations)

Plot of squared distance against number of clusters

Height Weight Clustering Solution

Weight(kg) (200 observations)

- Accuracy 88%
- 'First pass' result
- Readily implementable
- Methodology generalisable to n dimensions
- Where could this give more insight?
 - Segmentation (Distribution Channel)
 - Any homogeneous group selection
 - Deconstructing portfolios
 - Model point building
 - Outlier identification (Fraud etc.)
 - Trend analysis

Time Series

http://www.rdatamining.com/

- Constructed dataset
- 6 x 100 sub-series

Time Series

Time

	Predicted Group						
		1	2	3	4	5	6
•	1	97	3	0	0	0	0
dno	2	1	99	0	0	0	0
Gr	3	0	0	81	0	19	0
ual	4	0	0	0	63	0	37
Act	5	0	0	16	0	84	0
•	6	0	0	0	1	0	99

Accuracy 87%! •

- Accuracy 87%!!!
- Where could this give more insight?
 - Claim rates
 - Seasonal / Selection Effects
 - Investment performance analysis
 - Stochastic model analysis
 - Trend analysis

- Can help identify patterns in data
- Can help identify homogeneous groups
- Using computer power
- Relatively unsophisticated
- Possible to get answers quickly
- Perfect insight not possible
- Improved understanding may result

Any Questions?

- What is Data Science?
- Why has it Grown So Quickly?
- Opportunities and Threats
- Open Source vs Closed Source
- Buzzwords
- Example: Machine Learning Model
- Practical Examples