

Society of Actuaries in Ireland

Data Processing with R

10th September 2018

Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Types of Data Processing

- Data Manipulation Restructure/adjusting existing data sets
- Data Generation Creation of new data sets
- **Data Analysis** Summarise the messages from existing data sets

Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Data Manipulation

Example 1 – Data Manipulation – The Problem

- We required discounted cashflows from the cashflow model
- Our cashflow model produces undiscounted cashflows for each scenarios
- Large number of files (48) totalling 4GB in file size
- Need to simplify the data set, discount cashflows, average values over the scenarios

Example 1 – Data Manipulation – Excel Solution

Dis

1 Scenario\Period

	~	-	1.000	1.00	0.51	0.54	0.55	0.20
	3	2	0.999	0.99	0.97	1.00	1.05	0.15
Discount [.]	4	3	1.000	0.99	0.99	0.99	0.90	0.16
	5	4	1.002	1.01	0.96	0.87	0.90 •••	0.15
	6	5	0.998	0.99	0.90	0.81	0.75	0.27
	7 8				:			
	9	10000	1.002	0.98	0.95	0.97	0.91	0.16
						.	_	
				IUIT	IDIE	; B/		
		А	В	С	D	E	F G	Н
	1	Scenario\Period	1	2	3	4	5	720
	2	1	6,491	7,838	1,636	350	8,724	8,551
.	3	2	4,533	5,013	1,512	1,618	4,252	1,884
Cashflow:	4	3	9,778	7,213	8,815	4,360	9,913	7,193
• • • • • • • •	5	4	3,526	8,120	9,503	2,166	8,430	• 1,232
	6	5	2,277	3,814	9,448	3,962	1,969	561
	8	-						
		1						
	9	10000	5,981	1,538	5,639	8,666	8,827	1,446

Average of Columns

3

0 01

0 01

F G

0 93

5

Н

720

0.26

	А	В	С	D	E	F	G H
1	Scenario\Period	1	2	3	4	5	720
2	Average	7,989	5,475	4,811	3,403	5,001	1,134

Possible Excel Setup:

- 1. Use VBA to process the data
- 2. Read in a cashflow
- 3. Recalculate worksheets
- 4. Save averages to an output sheet

Example 1 – Data Manipulation – R Solution

```
discount_factor = read.csv("C:/marketdata/discount_factors.csv")
 1
 2
    for(fp_cashflow in list.files("C:/cashflows/", "*.csv", full.names=TRUE))
 3
 4 - {
 5
      cashflows = read.csv(fp_cashflow)
 6
 7
      discounted_cashflows = cashflows * discount_factor
 8
 9
      avg_discounted_cashflow = colMeans(discounted_cashflows)
10
11
      output = cbind(output, avg_discounted_cashflow)
12
    }
13
    write.csv(output, "C:/marketdata/expected_cashflows.csv")
14
```


When to Use VBA and Why

"VBA programming is a powerful solution, but it is not always the optimal approach.

Sometimes it makes sense to use other ways to achieve your aims." Microsoft

https://docs.microsoft.com/en-us/office/vba/library-reference/concepts/getting-startedwith-vba-in-office#when-to-use-vba-and-why

Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Data Generation

- Generate new data sets based on parameter inputs
- Often based on random number generation
- Leverage R's statistical capabilities "R is a language and environment for statistical computing"
- R solutions are quite practical
 - Set.seed reproducible in a single R version
 - RNGversion reproducible across different versions

Data Generation – Benefits of R

Example 2 – Data Generation – The Problem

- Simulate returns on a number of indexes (eg S&P500, FTSE100)
- Assume returns are normally distributed & correlated
- Require 60 years of output & 10k scenarios

Example 2 – Data Generation – Excel Solution

	А	В	С
1			
2	Parameters	S&P 500	FTSE
3	Avg. Return (mu)	1.50%	1.00%
4	Volatility (sigma)	16.00%	20.00%
5			
6	Returns = NC	DRM.INV(RAND(),	mu,sigma)
7			
8	Month	S&P 500	FTSE
9	0	0.00%	0.00%
10	1	29.87%	17.71%
11	2	-10.72%	6.99%
12	3	-1.76%	-7.73%
13	4	27.07%	-2.85%
14	5	10.09%	-16.23%
15	6	12.27%	-4.69%
16	7	8.84%	-19.21%
17		•••	
18	59	1.85%	24.12%
19	60	-14.87%	8.14%

Possible Excel Setup:

- 1. Use Excel to simulate returns
- 2. Use VBA to loop over scenarios and save to file
- 3. What about correlations?
- 4. What about repeatable random numbers?
- 5. Performance?
- 6. How scalable will our solution be?

Example 2 – Data Generation – R Solution

```
library(mvtnorm)
 1
 2
    set.seed(100)
 3
 4
         = c(SnP=0.015, FTSE=0.01)
    mu
 5
   sigma = c(SnP=0.16, FTSE=0.2)
 6
 7
    correl = c(1.0, 0.9)
 8
                0.9, 1.0)
 9
    CovMatrix = sigma %*% t(sigma) * matrix(correl,nrow=2,byrow=TRUE)
10
11
12 out = list()
13
14 • for(year in 1:60) {
15
16
     x = rmvnorm(10000, mu, CovMatrix)
17
18
     out$SnP = cbind(out$SnP, x[,"SnP"])
      out$FTSE = cbind(out$FTSE, x[,"FTSE"])
19
20
21
22
   write.csv(out$SnP, "C:/Example2/SnP.csv")
   write.csv(out$FTSE, "C:/Example2/FTSE.csv")
23
```


Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Data Analysis

- Summarise existing data sets (averages, standard deviations, percentiles etc)
- Produce statistical analysis on data sets (eg p-tests)
- Visualising data sets
- Fitting models

Data Analysis – Benefits of R

Statistical Packages	
Graphing Capabilities	
Online Support	
Data Transparency	?

Example 3 – Data Analysis – The Problem

• Perform a normality test on a data set (500 observations)

Example 3 – Data Analysis – Excel Solution

- Graph the frequency using a histogram (Data Analysis add-in)
- Produce a Q-Q plot (Scatter Plot + Line)
- Perform a Hypothesis Tests (P-Value approach). How?

Example 3 – Data Analysis – R Solution

- Graph the density plot (using ggplot2)
- Produce a Q-Q plot (using ggplot2)
- Perform a Hypothesis Tests (P-Value approach)

Example 3 – Data Analysis – R Solution

9

13

14

Example 3 – Data Analysis – R Solution

library(ggplot2) L 2

```
3
  observations = read.csv("C:/.../example3_data.csv")
4
```

- 5 # Density Graph - Observed & Std Normal
- 6 p1 = ggplot(mapping=aes(x=Values)) +geom_density(data=observations,color="red",size=1.3) + 7 8 geom_density(data=data.frame(Values=rnorm(100000)),size=1.3)

```
10
   # Q-Q Plot
```

```
11
    p2 = ggplot(data=observations,aes(sample=Values)) +
12
```

```
stat_qq(distribution = stats::qnorm) +
```

```
geom_abline(slope=1)
```

- 15 # Shapiro-Wilk
- 16 sw_results = shapiro.test(observations\$Values)

Example 3 – Data Analysis – Remark

- There is a unintentional mistake in the Excel Q-Q chart
- Expected/Observations axis are the wrong way around
- Error not realised until compared against results from R

Model & Code Review

Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Other Solutions (Non-Excel)

- Level of Industry Knowledge
- Solutions Online Support
 - Interoperability
 - Extensibility
 - Cost

Drawbacks of R

- **R** Low Industry Experience (eg Code Review)
 - Steep Learning Curve
 - Language Inconsistencies / Multiple Syntaxes
 - Performance

Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Introduction to dplyr

- dpylr is a package you can download for R
 - install.packages("dpylr")
 - Rstudio > Tools > Install Packages > search for dpylr
- Provides SQL like abilities to query and modify tables, all within R
- dplyr is optimised for data analysis
 - Very rich & powerful commands
 - Syntax is intuitive
- Very good document and online support

Introduction to dplyr - Example

PolicyID	ClientID	Gender	Premiums	Term	Age
1	4	Male	4943	10	43
2	11	Female	3088	15	48
3	18	Female	584	20	53
4	25	Male	5761	17	47

ph_data %>%
 select(-PolicyID,-ClientID) %>%
 filter(Age<50 & Term>=10) %>%
 mutate(AgeMonths = Age * 12) %>%
 group_by(Gender) %>%
 summarise_all(mean)

Introduction to dplyr - Example

Gender	Premiums	Term	Age	SumAssured	AgeMonths
Female	3088	15.0	48	61760	576
Male	5352	13.5	45	107040	540

Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Tips & Tricks

R Command	Description
rm(list=ls())	Put at start of script. Removes all variables. Ensures no unintentional picking up of variables
class/str	Inspect the data type of a variable
head, tail, dim	Inspect the beginning/end of the data. Dim prints the dimension (how many rows, cols)
set.seed	Ensures random numbers are reproducible
stringAsFactors=FALSE	Factors <u>may</u> not be what you
data.table	Very fast reading (fread) and writing (fwrite) to CSV files
traceback	Shows the line of code what caused the error

Introduce an error into Example 3:

17 #out\$SnP = cbind(out\$SnP, x[,"SnP"])
18 out\$SnP = cbind(out\$SnP, x\$SnP)
> source('~/.active-rstudio-document')
Error: \$ operator is invalid for atomic vectors

Traceback:

- > traceback()
- 5: cbind(out\$SnP, x\$SnP) at .active-rstudio-document#18
- 4: eval(ei, envir)
- 3: eval(ei, envir)
- 2: withVisible(eval(ei, envir))
- 1: source("~/.active-rstudio-document")

Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Further Support

- Online tutorials: <u>datacamp.com</u> (paid & free)
- Classroom based support: companies in Dublin running courses
- Individual Questions: google / stackoverflow.com

Recap

Part 1

- Types of Data Processing
- Data Manipulation
- Data Generation
- Data Analysis
- Other Solutions

- Introduction to dplyr
- Tips & Tricks
- Further Support

Q&A