

Society of Actuaries in Ireland

R for actuaries: Generalized Linear Models in R

Jean Rea

Disclaimer

The views expressed in this presentation are those of the presenter(s) and not necessarily of the Society of Actuaries in

Ireland

Introduction

- Basic introduction to GLMs in R
- Not intended to be advanced
- Assumes some statistical knowledge and basic R knowledge
- Will work through a practical example based on the Titanic data from the kaggle competition
- Uses

Initial analysis

- Understanding of the topic / area
- Understand the problem / objectives of the analysis
- Express the problem in statistical terms
- Data quality
- Exploratory data analysis e.g. numerical and graphical summaries

- Linear regression refresh
- Linear relationship between x (explanatory variable) and y (dependent variable)

 $y_i = \alpha + \beta * x_i + \varepsilon_i$

- Y is the value of the dependent variable, based on 2 components
 - Non random / structural component $\alpha + \beta * x_i$
 - Random component / error term
- Parameter estimation is based on minimising the prediction error / residual sum of squares

GLM introduction

- GLMs are a flexible generalization of ordinary linear model
- GLMs allow for response distributions other than Normal
- It allows for non linearity in the model structure by allowing the linear model to be related to the response variable via a link function
- Applies to data from an exponential family distribution (Normal, Poisson, Gamma, Binomial...)

GLM introduction

- Response variable in a glm can have any distribution from an exponential family
- Form of the exponential family:

$$f_{\theta}(y) = exp\left[rac{y heta - b(heta)}{a(\phi)}
ight] + c(y, \phi)$$

- a, b and c are arbitrary functions, ϕ is a scale parameter
- Normal, Binomial, Poisson, Gamma...

Exponential family – binomial example

$$P(Y = y) = {n \choose y} p^{y} (1-p)^{n-y}$$

$$= \exp\left\{\log\left[{n \choose y} p^{y} (1-p)^{n-y}\right]\right\}$$

$$= \exp\left\{\log{n \choose y} + y\log p + (n-y)\log(1-p)\right\}$$

$$= \exp\left\{\log{n \choose y} + y\log p - y\log(1-p) + n\log(1-p)\right\}$$

$$= \exp\left\{\log{n \choose y} + y\log \frac{p}{1-p} + n\log(1-p)\right\}$$

$$= \exp\left\{y\log \frac{p}{1-p} + n\log(1-p) + \log{n \choose y}\right\}$$

$$= \exp\left\{\frac{y\log \frac{p}{1-p} - n\log \frac{1}{1-p}}{1} + \log{n \choose y}\right\}$$

 $f(y) = \exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right]$

•
$$\theta = \log \frac{p}{1-p} = \log \frac{np}{n-np} = \log \frac{\mu}{n-\mu} = g(\mu)$$

• $b(\theta) = n \log \frac{1}{1-p} = n \log (1 + \exp(\theta))$
• $a(\phi) = 1$
• $c(y, \phi) = \log \binom{n}{y}$

https://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture20.htm

Fitting GLMs in R

• ?glm

Fitting Generalized Linear Models

Description

glm is used to fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution.

Usage

```
glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)
glm.fit(x, y, weights = rep(1, nobs),
start = NULL, etastart = NULL, mustart = NULL,
offset = rep(0, nobs), family = gaussian(),
control = list(), intercept = TRUE)
```

```
## S3 method for class 'glm'
weights(object, type = c("prior", "working"), ...)
```

Basic formula - glm(formula, family=family(link=linkfunction), data=)

Fitting GLMs in R

```
• ?family
binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
```

- Binomial logistic (binary) regression / response number of successes from known number of trials
- Gamma strictly positive real valued data
- Poisson count data

Example: Titanic kaggle competition

https://www.kaggle.com/c/titanic

Competition Description

- The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy shocked the international community and led to better safety regulations for ships.
- One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class.
- In this challenge, we ask you to complete the analysis of what sorts of people were likely to survive. In particular, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy.

Example: Titanic kaggle competition

Variable	Definition	Level (if applicable)	Notes
survival	Survival	0 = No, 1 = Yes	
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd	Proxy for socio-economic status 1 st = upper etc.
sex	Sex		
Age	Age in years		Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
sibsp	<pre># of siblings / spouses aboard the Titanic</pre>		Sibling = brother, sister, stepbrother, stepsister Spouse = husband, wife (mistresses and fiancés were ignored)
parch	# of parents / children aboard the Titanic		Parent = mother, father Child = daughter, son, stepdaughter, stepson Some children travelled only with a nanny, therefore parch=0 for them
ticket	Ticket number		
fare	Passenger fare		
cabin	Cabin number		
embarked	Port of Embarkation	C, Q, S	

Example: Titanic kaggle competition

- Will broadly follow the analysis below
- https://www.kaggle.com/jeremyd/titanic-logistic-regression-in-r
- This analysis is based on 7 steps
 - 1. Load and clean data
 - 2. Create data frame of variables
 - 3. Check for multicollinearity
 - 4. Build a logistic regression model
 - 5. Revise model
 - 6. Test accuracy of model on training data not going to do this part
 - 7. Use model to predict survivability for test data

R Studio

🗸 🚰 🖌 📄 🚔 🔿 Go to file/function 🛛 😨 🖌 Addins 👻					🙁 Project:
		For the second second			S Hojeca
Example.R × ⁽²⁾ JeanRea_16205109.R × ⁽²⁾ Titanic_R_Code_v1.R ×		Environment History	1		📃 List
🗠 📶 📄 🖸 Source on Save 🔍 Ž 🗸 🗐 👻	Run 🛃 Run =	😭 🔒 📰 Import Dataset	• •		
93 # Step 5: Revise Model	<u> </u>	Global Environment - Data			(u,
94 TitanicLog2 = glm(Survived ~ Parch, data = Train, family = binomial) 95 summary(TitanicLog2)		O Test	417 obs. of 13 varia	bloc	
96		O Train	889 obs. of 7 variab		
<pre>97 TitanicLog3 = glm(Survived ~ Parch - Fare, data = Train, family = binomial) 98 summary(TitanicLog3)</pre>		Values	009 003. 01 7 Val 140		
99		nonvars	chr [1:7] "Passenger	Id" "Name" "Ticket" "Embarked" "Cabin	" "CabinInd" "f
00 glm(Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare, family = "binomial", data = Train) 01		predictTest		0806 0.3637 0.0849 0.1058 0.6088	
02		🔾 TitanicLog1	Large glm (30 elemen	ts, 713.5 κb)	
03 step(TitanicLog1, test="LRT") 04		♥ TitanicLog2	Large glm (30 elemen		
par(mfrow=c(2,2))		O TitanicLog3	Large glm (30 elemen	ts, 700.5 Kb)	
6 plot(TitanicLog3)					
07 par(mfrow=c(1,1)) 08					
09					
LO ?predict L1 # Step 6: Use Model to predict survivability for Test Data					
<pre>L2 predictTest = predict(TitanicLog3, type = "response", newdata = Test)</pre>		Files Plots Packages H	elp Viewer		
L3 L4 # no preference over error t = 0.5		(= -) 🖉 Zoom 🗷 Ex			📀 Publis
L5 Test\$survived = as.numeric(predictTest >= 0.5)					J 1 0013
16 table(Test\$Survived) 17					
18			Residuals vs Fitted	Normal Q-	C
19 20		m -	20 20 20 20 20 20 20 20 20 20 20 20 20 2	<u>σ</u>	
47 (Top Level) \$	R Script 🗘	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CONTRACTOR OF CONTRACTOR	resid	and the base
sole C:/Users/jrea/Desktop/Background/Data Analytics/SAI/GLMs/Evening Meeting/Titanic/Data/ 🖒					
		0		ie o -	
l: glm(formula = Survived ~ Pclass + Sex + Age + SibSp, family = binomial(link = logit), data = Train)		2 &			
		œ '		- ee	
		-	298°	9 - 7 - 89	
		φ		S 200	1 1
		-		³ ³ ³ − ¹ ² ² ³ − ² ² ³ − − − − − − − − − − − − −	1 2 3
ntercept) Pclass2 Pclass3 Sexmale Age SibSp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711		φ	-2 0 2	ਦਾ ਨਾ – -3 -2 -1 0	
tercept) Pclass2 Pclass3 Sexmale Age SibSp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 rees of Freedom: 888 Total (i.e. Null); 883 Residual l Deviance: 1183		φ	298	288 - 0288	
tercept) Pclass2 Pclass3 Sexmale Age SibSp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 rees of Freedom: 888 Total (i.e. Null); 883 Residual l Deviance: 1183		φ	-2 0 2	ਦਾ ਨਾ – -3 -2 -1 0	
tercept) Pclass2 Pclass3 Sexmale Age SibSp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 rees of Freedom: 888 Total (i.e. Null); 883 Residual 1 Deviance: 1183 idual Deviance: 790.3 AIC: 802.3 ar (mfrow=c(2,2))		φ	-2 0 2 Predicted values	ਦਾ ਨਾ – -3 -2 -1 0	
ntercept) Pclass2 Pclass3 Sexmale Age SibSp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 prees of Freedom: 888 Total (i.e. Null); 883 Residual 1 Deviance: 1183 idual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) iduc(TitanicLog3)		φ -4	-2 0 2 Predicted values	ਦਾ ਨਾ – -3 -2 -1 0	ntiles
ntercept) Pclass2 Pclass3 Sexmale Age SibSp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 prees of Freedom: 888 Total (i.e. Null); 883 Residual 1 Deviance: 1183 idual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) olot(TitanicLog3)		φ -4	-2 0 2 Predicted values	-3 -2 -1 0 Theoretical Qua Residuals vs Le	ntiles
4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 grees of Freedom: 888 Total (i.e. Null); 883 Residual 11 Deviance: 1183 sidual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) plot(TitanicLog3) par(mfrow=c(1,1))		ς, - - -4	-2 0 2 Predicted values	E C C C C C C C C C C C C C C C C C C C	verage
<pre>ntercept) Pclass2 Pclass3 Sexmale Age sibsp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 grees of Freedom: 888 Total (i.e. Null); 883 Residual l Deviance: 1183 sidual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) plot(TitanicLog3) par(mfrow=c(1,1)) Ppredict</pre>		ς, - - -4	-2 0 2 Predicted values	E C C C C C C C C C C C C C C C C C C C	verage
<pre>ntercept) Pclass2 Pclass3 Sexmale Age Sib5p 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 grees of Freedom: 888 Total (i.e. Null); 883 Residual l) Deviance: 1183 sidual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) plot(TitanicLog3) par(mfrow=c(1,1)) ??predict # Step 6: Use Model to predict survivability for Test Data</pre>		5 1.0 1.5 5 1.0 1.5 + +	-2 0 2 Predicted values	E C C C C C C C C C C C C C C C C C C C	verage
ntercept) Pclass2 Pclass3 Sexmale Age Sib5p 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 grees of Freedom: 888 Total (i.e. Null); 883 Residual 11 Deviance: 1183 sidual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) plot(TitanicLog3)		tid. deviance resid.l 0.5 1.0 1.5 + +	-2 0 2 Predicted values	E C C C C C C C C C C C C C C C C C C C	verage
<pre>ntercept) Pclass2 Pclass3 Sexmale Age SibSp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 grees of Freedom: 888 Total (i.e. Null); 883 Residual l) Deviance: 1183 sidual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) olot(TitanicLog3) par(mfrow=c(1,1)) ?predict f Step 6: Use Model to predict survivability for Test Data predictTest = predict(TitanicLog3, type = "response", newdata = Test) # no preference over error t = 0.5 FestSSurvived = as.numeric(predictTest >= 0.5)</pre>		tid. deviance resid.l 0.5 1.0 1.5 + +	-2 0 2 Predicted values	E C C C C C C C C C C C C C C C C C C C	verage
<pre>ntercept) Pclass2 Pclass3 Sexmale Age Sib5p 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 grees of Freedom: 888 Total (i.e. Null); 883 Residual l Deviance: 1183 sidual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) plot(TitanicLog3) par(mfrow=c(1,1)) ?predict # Step 6: Use Model to predict survivability for Test Data predicttest = predict(TitanicLog3, type = "response", newdata = Test)</pre>		A[Std. deviance resid.]	-2 0 2 Predicted values	Pione	verage
<pre>ntercept) Pclass2 Pclass3 Sexmale Age SibSp 4.02186 -1.18325 -2.34121 -2.73294 -0.04006 -0.35711 grees of Freedom: 888 Total (i.e. Null); 883 Residual l] Deviance: 1183 sidual Deviance: 790.3 AIC: 802.3 par(mfrow=c(2,2)) plot(TitanicLog3) par(mfrow=c(1,1)) ?predict # Step 6: Use Model to predict survivability for Test Data predictTest = predict(TitanicLog3, type = "response", newdata = Test) # no preference over error t = 0.5 Test\$Survived = as.numeric(predictTest >= 0.5)</pre>		tid. deviance resid.l 0.5 1.0 1.5 + +	-2 0 2 Predicted values	Pione	verage

 Project: (None) 🔻 -🗏 List 🗸 🖾

- Download csv files from website and save in your own directory
- Set working directory in R: Session \rightarrow Set working directory \rightarrow ...
- Then import the data into R, number of calls exist
- File filename.
- Header a logical value indicating whether the file contains the names of the variables as its first line.
- Sep the field separator character. Values on each line of the file are separated by this character.

What it looks like in Excel:

Passenger	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	CabinInd
1	0	3	Braund, N	male	22	1	0	A/5 21171	7.25		S	0
2	1	1	Cumings,	female	38	1	0	PC 17599	71.2833	C85	С	1
3	1	3	Heikkinen	female	26	0	0	STON/O2.	7.925		S	0
4	1	1	Futrelle, N	female	35	1	0	113803	53.1	C123	S	1
5	0	3	Allen, Mr.	male	35	0	0	373450	8.05		S	0
6	0	3	Moran, M	male		0	0	330877	8.4583		Q	0

Importing into R:

- Train=read.csv("train.csv",header=T,na.strings=c(""))
- Test=read.csv("test.csv",header=T,na.strings=c(""))
- str(Train)
- str(Test)

- Data frame is a way of storing data like a matrix except columns can have different data types
- Factors store categorical variables in R

```
> str(Train)
'data.frame':
               891 obs. of 13 variables:
 $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
 $ Survived
            : int 0111000011...
 $ Pclass
             : int 3131331332...
             : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 41
$ Name
7 581 ...
             : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
 $ Sex
             : num 22 38 26 35 35 NA 54 2 27 14 ...
$ Age
$ SibSp
             : int 1101000301...
             : int 000000120...
$ Parch
             : Factor w/ 681 levels "110152", "110413", ...: 524 597 670 50 473 276 86 396 345 133
 $ Ticket
 . . .
             : num 7.25 71.28 7.92 53.1 8.05 ...
 $ Fare
             : Factor w/ 147 levels "A10", "A14", "A16",..: NA 82 NA 56 NA NA 130 NA NA NA ...
 $ Cabin
             : Factor w/ 3 levels "C", "Q", "S": 3 1 3 3 3 2 3 3 3 1 ...
 $ Embarked
             : int 0101001000...
 $ CabinInd
```


apply(Train,2,function(x) sum(is.na(x)))

rived Pcla	ass	Name	Sex	Age	SibSp
0	0	0	0	177	0
cket F	are (Cabin Em	barked Ca	abinInd	
0	0	687	2	0	
	0	0 0	0 0 0 icket Fare Cabin Em	0 0 0 0 icket Fare Cabin Embarked Ca	0 0 0 0 177 icket Fare Cabin Embarked CabinInd

 Lots of missing ages and cabins, also 2 observations with missing Embarked

#lots of missing age values for each - replace with mean
Train\$Age[is.na(Train\$Age)] = mean(Train\$Age,na.rm=T)

• Also deal with other missing observations – I have removed them

summary(Train)

> summary(Train)

> summary(ira	in)					
PassengerId	Survived	F	Pclass			Name
Min. : 1	Min. :0.0000	Min.	:1.000	Abbing, Mr. An	thony	: 1
1st Qu.:224	1st Qu.:0.0000	1st (Qu.:2.000	Abbott, Mr. Ro	ssmore Edward	: 1
Median :446	Median :0.0000	Media	an :3.000	Abbott, Mrs. S	tanton (Rosa Hunt)	: 1
Mean :446	Mean :0.3825	Mean	:2.312	Abelson, Mr. S	amuel	: 1
3rd Qu.:668	3rd Qu.:1.0000	3rd (Qu.:3.000	Abelson, Mrs.	Samuel (Hannah Wizo	sky): 1
Max. :891	Max. :1.0000	Max.	:3.000		ritz Nils Martin	: 1
				(Other)		:883
Sex	Age	Sil	oSp	Parch	Ticket	
female:312	Min. : 0.42	Min.	:0.0000	Min. :0.0000	1601 : 7	
male :577	1st Qu.:22.00	1st Qu	.:0.0000	1st Qu.:0.0000	347082 : 7	
	Median :29.70	Median	:0.0000	Median :0.0000	CA. 2343: 7	
	Mean :29.65	Mean	:0.5242	Mean :0.3825	3101295 : 6	
	3rd Qu.:35.00	3rd Qu	.:1.0000	3rd Qu.:0.0000	347088 : 6	
	Max. :80.00	Max.	:8.0000	Max. :6.0000	CA 2144 : 6	
					(Other) :850	
Fare	Cal	oin	Embarked	CabinInd		
Min. : 0.	000 в96 в98	: 4	C:168	Min. :0.0000		
1st Qu.: 7.	896 c23 c25 c27	7: 4	Q: 77	1st Qu.:0.0000		
Median : 14.4	454 G6	: 4	s:644	Median :0.0000		
Mean : 32.	097 C22 C26	: 3		Mean :0.2272		
3rd Qu.: 31.	000 D	: 3		3rd Qu.:0.0000		
Max. :512.		:184		Max. :1.0000		
	NA's	:687				

Also consider categorical variables

```
> table(Train$Sex, Train$Survived)
           0
               1
  female
         81 231
        468 109
 male
> prop.table(table(Train$Sex, Train$Survived),1)
                 0
  female 0.2596154 0.7403846
        0.8110919 0.1889081
 male
> prop.table(table(Train$Sex, Train$Survived),2)
                 0
                           1
  female 0.1475410 0.6794118
        0.8524590 0.3205882
 male
```


Step 2: Create data frame of variables

Step 2: Create DF of independent/dependent variables

nonvars =

c("PassengerId","Name","Ticket","Embarked","Cabin","CabinInd")

Train = Train[,!(names(Train) %in% nonvars)]

```
str(Train)
 > str(Train)
 'data.frame': 889 obs. of 7 variables:
  $ Survived: int 0111000011...
  $ Pclass : int
               3131331332...
          : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
  $ Sex
   Age
          : num
                22 38 26 35 35 ...
  $ SibSp : int
               1101000301...
                    00000120...
          : int
  § Parch
  $ Fare
               7.25 71.28 7.92 53.1 8.05 ...
           : num
```

Train\$Pclass = as.factor(Train\$Pclass)

Step 3: Collinearity

Step 3: Check for MultiCollinearity

Step 4: Build a Logistic Regression Model

```
TitanicLog1 = glm(Survived~., data = Train, family =
binomial(link=logit))
```

summary(TitanicLog1)

' 1

Deviance Residuals:

Min	1Q	Median	3Q	Мах
-2.7055	-0.6098	-0.4271	0.6147	2.4188

Coefficients:

	Estimate S	td. Error	z value	Pr(> z)	
(Intercept)	3.836254	0.446497	8.592	< 2e-16	***
Pclass2	-1.017868	0.293867	-3.464	0.000533	***
Pclass3	-2.144843	0.289561	-7.407	1.29e-13	***
Sexmale	-2.753512	0.199454	-13.805	< 2e-16	***
Age	-0.039687	0.007858	-5.051	4.40e-07	***
sibsp	-0.349212	0.109498	-3.189	0.001427	**
Parch	-0.111842	0.117598	-0.951	0.341579	
Fare	0.002969	0.002441	1.216	0.223854	
Signif. code	es: 0'***'	0.001 '**	°'0.01	'*' 0.05 '	'.' 0.1'

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.82 on 888 degrees of freedom Residual deviance: 788.16 on 881 degrees of freedom AIC: 804.16

```
Number of Fisher Scoring iterations: 5
```

means to include first order terms of all variables
Other options:
to exclude the intercept
to exclude terms

: to include interactions

Alternative is to explicitly state them in the formula:

glm(Survived ~ Pclass + Sex +

Age + SibSp + Parch + Fare, family

= binomial, data = Train)

Call: glm(formula = Survived ~ ., family = binomial(link = logit), data = Train)

Deviance Residuals: Min 1Q Median 3Q Max -2.7055 -0.6098 -0.4271 0.6147 2.4188

Coefficients:

	Estimate S	td. Error	z value	Pr(> z)	
(Intercept)	3.836254	0.446497	8.592	< 2e-16	***
Pclass2	-1.017868	0.293867	-3.464	0.000533	***
Pclass3	-2.144843	0.289561	-7.407	1.29e-13	***
Sexmale	-2.753512	0.199454	-13.805	< 2e-16	***
Age	-0.039687	0.007858	-5.051	4.40e-07	***
sibsp	-0.349212	0.109498	-3.189	0.001427	* *
Parch	-0.111842	0.117598	-0.951	0.341579	
Fare	0.002969	0.002441	1.216	0.223854	
Signif. code	es: 0 '***'	0.001 '*'	' 0.01	'*' 0.05 '	.'0.1''1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.82 on 888 degrees of freedom Residual deviance: 788.16 on 881 degrees of freedom AIC: 804.16

```
Number of Fisher Scoring iterations: 5
```



```
Call:
glm(formula = Survived ~ ., family = binomial(link = logit).
    data = Train)
Deviance Residuals:
   Min
             1Q Median
                              3Q
                                      Max
-2.7055 -0.6098 -0.4271
                          0.6147
                                   2.4188
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
                                 8.592 < 2e-16
(Intercept) 3.836254
                      0.446497
Pclass2
           -1.017868
                      0.293867 -3.464 0.000533
Pclass3
          -2.144843
                      0.289561 -7.407 1.29e-13
Sexmale -2.753512
                      0.199454 -13.805 < 2e-16
Age
           -0.039687
                      0.007858 -5.051 4.40e-07
sibsp
          -0.349212
                      0.109498 -3.189 0.001427 **
           -0.111842
                      0.117598 -0.951 0.341579
Parch
                      0.002441
                                 1.216 0.223854
            0.002969
Fare
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 1182.82 on 888 degrees of freedom
Residual deviance: 788.16 on 881 degrees of freedom
AIC: 804.16
Number of Fisher Scoring iterations: 5
```

Note factors / categorical variables are relative to a baseline

Call: glm(formula = Survived ~ ., family = binomial(link = logit), data = Train) Deviance Residuals: Min 1Q Median 3Q Max -2.7055 -0.6098 -0.4271 0.6147 2.4188 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 3.836254 0.446497 8.592 < 2e-16 Pclass2 -1.017868 0.293867 -3.464 0.000533 Pclass3 -2.144843 0.289561 -7.407 1.29e-13 Sexmale -2.753512 0.199454 -13.805 < 2e-16 0.007858 -5.051 4.40e-07 Age -0.039687 sibsp -0.349212 0.109498 -3.189 0.001427 ** -0.1118420.117598 -0.951 0.341579 Parch 0.002441 1.216 0.223854 0.002969 Fare Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1182.82 on 888 degrees of freedom Residual deviance: 788.16 on 881 degrees of freedom AIC: 804.16

Number of Fisher Scoring iterations: 5

Hypothesis testing individual coefficients.

Null hypothesis is that parameter is zero.

Test statistic z-statistic is the estimate divided by the standard error e.g. Pclass2 -1.02/.29=-3.51

Note here scale parameter is known.

z-statistic is asymptotically standard normal when Ho is true and the sample size is fairly large.

1

Deviance Residuals: Min 1Q Median 3Q Max -2.7055 -0.6098 -0.4271 0.6147 2.4188

Coefficients:

	Estimate S	td. Error	z value	Pr(> z)	
(Intercept)	3.836254	0.446497	8.592	< 2e-16	***
Pclass2	-1.017868	0.293867	-3.464	0.000533	***
Pclass3	-2.144843	0.289561	-7.407	1.29e-13	***
Sexmale	-2.753512	0.199454	-13.805	< 2e-16	***
Age	-0.039687	0.007858	-5.051	4.40e-07	***
sibsp	-0.349212	0.109498	-3.189	0.001427	**
Parch	-0.111842	0.117598	-0.951	0.341579	
Fare	0.002969	0.002441	1.216	0.223854	
Signif. cod	es: 0'***'	0.001 '*'	°'0.01	'*' 0.05	'.' 0.1''

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.82 on 888 degrees of freedom Residual deviance: 788.16 on 881 degrees of freedom AIC: 804.16

```
Number of Fisher Scoring iterations: 5
```


''1

	-
Cal	
$\sim \alpha$	

Deviance Residuals:

Min	1Q	Median	3Q	Max
-2.7055	-0.6098	-0.4271	0.6147	2.4188

```
Coefficients:
```

	Estimate Si	td. Error	z value	Pr(> z)	
(Intercept)	3.836254	0.446497	8.592	< 2e-16	***
Pclass2	-1.017868	0.293867	-3.464	0.000533	***
Pclass3	-2.144843	0.289561	-7.407	1.29e-13	***
Sexmale	-2.753512	0.199454	-13.805	< 2e-16	***
Age	-0.039687	0.007858	-5.051	4.40e-07	***
sibsp	-0.349212	0.109498	-3.189	0.001427	**
Parch	-0.111842	0.117598	-0.951	0.341579	
Fare	0.002969	0.002441	1.216	0.223854	
Signif. code	es: 0 '***'	0.001 '**	°' 0.01	'*' 0.05'	.' 0.1
-					
(-) · · · · · · · · · · · · · · · · · · ·		1 A	1 6 11		1 A N

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.82 on 888 degrees of freedom Residual deviance: 788.16 on 881 degrees of freedom AIC: 804.16

```
Number of Fisher Scoring iterations: 5
```

Check on overall model fit / appropriateness – Probability of a Chi-Squared 881 random variable being as large as 788. The probability is approximately 99% which is high and supports that it does follow a Chi-Squared distribution with 881 df.

The Null deviance is the deviance for a model with just a constant term

Residual deviance is the deviance of the fitted model.

These can be combined to give the proportion deviance explained, a generalization of R Squared, as follows:

> (1182.82-788.16)/1182.82 [1]
0.3336602

Step 5: Revise model

Call: glm(formula = Survived ~ Parch, family = binomial, data = Train)	
Deviance Residuals: Min 1Q Median 3Q Max -2.7394 -0.6023 -0.4206 0.6102 2.4498	
Coefficients:	
Estimate Std. Error z value Pr(> z)(Intercept)3.8112240.4439298.585< 2e-16***Pclass2-1.0434880.291840-3.5760.000349***Pclass3-2.1760990.286569-7.5943.11e-14***Sexmale-2.7173780.195045-13.932< 2e-16***Age-0.0394170.007838-5.0294.93e-07***SibSp-0.3770690.106138-3.5530.000381***Fare0.0024620.0023191.0620.288339	
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
(Dispersion parameter for binomial family taken to be 1)	
Null deviance: 1182.82 on 888 degrees of freedom	

Residual deviance: 789.08 on 882 degrees of freedom AIC: 803.08

```
Number of Fisher Scoring iterations: 5
```

-Parch Means to remove Parch

Step 5: Revise model

```
call:
glm(formula = Survived ~ . - Parch - Fare, family = binomial,
   data = Train)
Deviance Residuals:
   Min
             10 Median
                              3Q
                                     мах
-2.6877 -0.6028 -0.4219 0.6116
                                 2.4523
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.021856 0.399906 10.057 < 2e-16 ***
Pclass2
           -1.183245 0.261950 -4.517 6.27e-06 ***
Pclass3 -2.341213 0.242938 -9.637 < 2e-16 ***
Sexmale -2.732937 0.194376 -14.060 < 2e-16
                                               ***
      -0.040059 0.007813 -5.128 2.94e-07 ***
Age
sibsp -0.357112 0.104111 -3.430 0.000603 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1182.8 on 888 degrees of freedom
Residual deviance: 790.3 on 883 degrees of freedom
```

```
Number of Fisher Scoring iterations: 5
```

AIC: 802.3

We can do this in an automated way: step(TitanicLog1, test="LRT")

Step 5: Revise model

Check model diagnostics – not very informative for logistic regression

plot(TitanicLog3)

Step 7: Use model to predict survival on test data

- # Step 7: Use Model to predict survivability for Test Data
- predictTest = predict(TitanicLog3, type = "response", newdata = Test)
- Setting type to response means that you get the predicted probabilities otherwise the default for a binomial are predictions on the logit / log odds scale
- If we had the survival indicator for the test data we could also calculate a misclassification rate

Interpretation

Deviance Residuals: Min 1Q Median 3Q Max -2.6877 -0.6028 -0.4219 0.6116 2.4523

Coefficients:

	Estimate S	Std. Error	z value	Pr(> z)	
(Intercept)	4.021856	0.399906	10.057	< 2e-16	***
Pclass2	-1.183245	0.261950	-4.517	6.27e-06	***
Pclass3	-2.341213	0.242938	-9.637	< 2e-16	***
Sexmale	-2.732937	0.194376	-14.060	< 2e-16	***
Age	-0.040059	0.007813	-5.128	2.94e-07	***
sibsp	-0.357112	0.104111	-3.430	0.000603	***
Signif. code	es: 0 '***'	' 0.001 '*'	' 0.01	'*' 0.05'	.'0.1'

' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1182.8 on 888 degrees of freedom Residual deviance: 790.3 on 883 degrees of freedom AIC: 802.3

Number of Fisher Scoring iterations: 5

- Logodds, odds and probabilities are variations of each other
- The estimates are on the scale of the linear predictor (logodds for binomial), can convert
- Factors need to be interpreted relative to the baseline
- For continuous it relates to a one unit increase e.g. a one unit increase in age changes the log odds of surviving by an estimated -0.04

Other considerations

- Over dispersion
- Use of offset
 - Paper "Applications of the Offset in Property-Casualty Predictive Modeling"

Other considerations - overdispersion

• Illustrative glm call for quasibinomial - not saying it is present here

```
call:
glm(formula = Survived ~ . - Parch - Fare, family = guasibinomial,
    data = Train)
Deviance Residuals:
    Min
             10 Median
                               3Q
                                       Max
-2.6877 -0.6028 -0.4219
                           0.6116
                                    2.4523
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.021856
                     0.407074
                                  9.880 < 2e-16
                       0.266645
Pclass2
           -1.183245
                                -4.438 1.02e-05
Pclass3
           -2.341213 0.247292 -9.467 < 2e-
Sexmale
           -2.732937 0.197860 -13.813 < 2e-16
           -0.040059 0.007953 -5.037 5.73e-07
Age
SibSp
           -0.357112
                       0.105977 -3.370 0.000785 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for quasibinomial family taken to be 1.036169)
    Null deviance: 1182.8 on 888 degrees of freedom
Residual deviance: 790.3 on 883 degrees of freedom
```

Number of Fisher Scoring iterations: 5

AIC: NA

Other datasets

Third party motor insurance claims in Sweden in 1977

Description

In Sweden all motor insurance companies apply identical risk arguments to classify customers, and thus their portfolios and their claims statistics can be combined. The data were compiled by a Swedish Committee on the Analysis of Risk Premium in Motor Insurance. The Committee was asked to look into the problem of analyzing the real influence on claims of the risk arguments and to compare this structure with the actual tariff.

Usage

data (motorins)

Format

A data frame with 1797 observations on the following 8 variables

Kilometres

an ordered factor representing kilomoters per year with levels 1: < 1000, 2: 1000-15000, 3: 15000-20000, 4: 20000-25000, 5: > 25000

Zone

a factor representing geographical area with levels 1: Stockholm, Goteborg, Malmo with surroundings 2: Other large cities with surroundings 3: Smaller cities with surroundings in southern Sweden 4: Rural areas in southern Sweden 5: Smaller cities with surroundings in northern Sweden 6: Rural areas in northern Sweden 7: Gotland

Bonus

No claims bonus. Equal to the number of years, plus one, since last claim

Make

A factor representing eight different common car models. All other models are combined in class 9

Insured

Number of insured in policy-years

Claims

Number of claims

Payment

Total value of payments in Skr

perd

payment per claim

Other datasets

- install.packages("faraway")
- library(faraway)
- data(motorins)
- str(motorins)

> str(motorins) 'data.frame': 1797 obs. of 8 variables: \$ Kilometres: Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 1 1 1 1 1 1 ... : Factor w/ 7 levels "1", "2", "3", "4",..: 1 1 1 1 1 1 1 1 1 1 ... \$ zone \$ Bonus : int 1111111112... : Factor w/ 9 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 1 ... \$ Make \$ Insured : num 455.1 69.2 72.9 1292.4 191 ... \$ Claims : int 108 19 13 124 40 57 23 14 1704 45 ... \$ Payment : int 392491 46221 15694 422201 119373 170913 56940 77487 6805992 214011 ... 3634 2433 1207 3405 2984 ... \$ perd : num

Uses

- Non Life pricing
- Non Life reserving see paper "STOCHASTIC LOSS RESERVING USING GENERALIZED LINEAR MODELS" by *Greg Taylor and Gráinne McGuire*
- Life modelling

R sessions – coming soon

