

Society of Actuaries in Ireland

Embedding Wearable Health Tech into Insurance

Lisa Altmann-Richer

Disclaimer

The views expressed in this presentation are those of the presenter and not necessarily of the Society of Actuaries in

Ireland

Lisa Altmann-Richer

- Actuarial Pricing Consultant, Bupa UK
- Blog on topical health actuarial issues
 - <u>www.healthactuarial.com</u>
- Member of IFoA's "Impact of Wearables and Internet of Things" Working Party
- Independent research on wearable health tech forms the basis of this presentation:
 - "Physical Activity Tracking in Private Health Insurance" research paper for IFoA, July 2017
 - International Health Policy MSC Dissertation at London School of Economics on "The policy challenges of the use of wearables by private health insurers"

The wearables market is growing

- Wearables market set to grow from \$10.8bn in 2017 to \$16.9bn by 2021.
- Activity tracking devices comprise the majority of wearables sales, with smartwatch sales forecast to double by 2021.
- Provides an opportunity for wearables to become embedded into insurance.

Embedding wearables into insurance

- Short-term: increasing uptake
- Medium-term: use in underwriting
- Long-term: encouraging behavioural change

SHORT-TERM

Does increased activity reduce risk of chronic diseases?

Systematic literature review screened >1,000 articles

77 studies met inclusion criteria

Altmann-Richer (2017). Physical Activity Tracking in Private Health Insurance.

Limitations need to be overcome

Limitations	Potential solutions
 Studies use self-reported measures of physical activity Studies not representative of insurance pool Limited number of studies for certain NCDs Contradictions between subgroups 	 Insurers to encourage uptake through discounts and rewards Broaden appeal to wide range of policyholders not just most physically active
 Accuracy of devices can differ by up to 20% Fraudulent use of devices 	 Medical grade wearables could improve accuracy and allow use of biometrics to help prevent fraudulent use

MEDIUM-TERM

Classing policyholders according to health risks

- 84% of included studies found evidence of long-term association between increased physical activity and reduced risk of chronic disease even when controlling for other variables.
- Once relationships have been refined there may be the opportunity to use data from physical activity trackers to class insurees to help adjust premiums in line with risk.
- Physical activity trackers may set a precedent for how other health data is used by insurers going forwards.
 - ECG, core body temperature, respiration, blood sugar

Insurers may want to use data from wearables to charge premiums according health risks:

- Cheaper premiums for the more physically active
- More expensive premiums for the less physically active

Regulators may want to prevent prohibitively high premiums for those who:

- lead less healthy lifestyles
- can't afford wearables
- choose not to share their data with insurers

Classing

Risk-smoothing

LONG-TERM

Moving towards a behavioural change approach

Insurer's findings

- Cigna found incentives lead to better health engagement and clinical outcomes for customers enrolled in employer-sponsored plans. (Cigna, 2015).
 - 43% more likely to meet goals when using a health coach.
 - 10% reduction in medical costs for >50s
 with a chronic condition.
- HumanaVitality rewards-based wearable insurance scheme found benefits for more physically active users (Finnegan, 2016).
 - 18% increase in healthcare savings.
 - 44% reduction in sickness absence.

Peer reviewed published research

- Few studies to date, and on a small scale.
- Meta-analysis found no statistically significant impact of remote patient monitoring on health outcomes. (Noah, 2018).
 - 800 person study found no significant difference for rewards-based wearables programs with no significant health improvements (Finkelstein, 2016).
 - Study of 471 overweight adults found that the addition of a wearable technology device resulted in less weight loss over 24 months (Jakicic, 2016).

- Self determination theory suggests that extrinsic motivators aren't effective in bringing about long-term sustained changes in behaviour.
- Money is not an effective long term motivator.
- Currently companion apps with physical activity activity trackers appeal predominately to extrinsic motivation through the use of free gifts, leaderboards and digital rewards.

Deci & Ryan (2002). Handbook of Self-determination research.

- Self-determination theory suggests intrinsically motivating stimuli are more effective at bringing about long-term behavioural change.
- Intrinsic motivators explain the virtues of the underlying behavioural change.
- Insurers could pioneer internally motivating strategies to improve health:
 - Personalized goal setting
 - Health coaching
 - Real-life simulation with VR
 - Real-time education with AR

Deci & Ryan (2002). Handbook of Self-determination research.

Collaboration with other stakeholders in the ecosystem

Any questions?

Contact Details - Lisa Altmann-Richer

- LinkedIn: www.linkedin.com/in/altmann-richer/
- Email: lisaar@gmail.com
- Website: www.healthactuarial.com

References

- Altmann-Richer (2017). Physical Activity Tracking in Private Health Insurance. IFoA. <u>https://www.actuaries.org.uk/documents/physical-activity-tracking-private-insurance</u>
- Cigna (2015). Incentives drive health and affordability. <u>https://www.cigna.com/assets/docs/about-cigna/sustainability/885799-biometric-infographic.pdf</u>
- CCS Insight (2017). Global Wearables Forecast 2017-2021. <u>https://www.ccsinsight.com/press/company-news/2968-ccs-insight-forecast-reveals-steady-growth-in-smartwatch-market</u>
- Deci & Ryan (2002). Handbook of Self-determination research.
- Finkelstein et al. (2016), Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial, The Lancet Diabetes & Endocrinology. https://doi.org/10.1016/S2213-8587(16)30284-4
- Finnegan (2016). Humana encourages members to use wearable technology to improve health. Retrieved June 15, 2017, from Fierce Healthcare: <u>http://www.fiercehealthcare.com/payer/humana-encourages-members-to-use-wearable-technology-to-improve-health</u>
- Jakicic et al. (2016) Effect of Wearable Technology Combined with a Lifestyle Intervention on Long-term Weight Loss, The IDEA Randomized Clinical Trial. JAMA. <u>https://doi.org/10.1001/jama.2016.12858</u>
- Noah et al. (2018) Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. Digital Medicine. https://www.nature.com/articles/s41746-017-0002-4