

Society of Actuaries in Ireland

Non Life Pricing Seminar Topical Actuarial Perspectives

Wednesday – 21st March, 2018

Radisson Blu Golden Lane Hotel

Agenda – Non-Life Pricing Seminar 2018

Time	Title	Speakers
8:30 - 8:35	Welcome	Cecilia Cheuk
8:35 - 9:20	Machine Learning	Duncan Anderson
9:20 - 10:05	Advanced Modelling Techniques for General Insurance Claims Data	Adrian O'Hagan/Sen Hu
10:05 – 10:25	Coffee Break	
10:30 - 11:15	Parallel Sessions	
	A. Commercial Lines Pricing Techniques	Eoin O'Baoighill
	B. Current hot-topics in Personal Lines Pricing	Jenny Quigley
11:20 - 12:50	Professionalism	
	"YouCanNotLose" (Volunteers: Aidan Redmond, Grainne Murray, Jenny Johnston, Mark McCormick, Shane Walsh)	Neil Hilary
	"ambiguous illusion"	Cecilia Cheuk
12:50 - 13:00	Closing	Cecilia Cheuk

Disclaimer:

The material, content and views in the following presentation are those of the presenter(s).

Competition Law Awareness

Please be mindful when you are participating in any discussions during this seminar.

Duncan Anderson, MA FIA

- Managing Director, WTW
- Global Leader for Insurance
 Technology
- Professional activities
 - IFoA GI Board
 - IFoA GRIP Taskforce
 - IFoA GI Pricing Seminars
- "A Practitioner's Guide to Generalized Linear Models"

duncan.anderson@willistowerswatson.com

UCD Insight - Centre for Data Analytics

Dr. Adrian O'Hagan

Sen Hu, MSc

University of Edinburgh Imperial College London

Empowering Citizens. Smarter Societies.

Advanced Modelling Techniques for General Insurance Claims Data

SAI pricing seminar

Mr Sen Hu, Dr Adrian O'Hagan, Prof T. Brendan Murphy

Introduction

- Background: Insight Centre for Data Analytics
- Project objectives
- Factor collapsing with Bayesian model averaging (FCBMA)
- Conclusion

Insight Centre for Data Analytics

- The largest Science Foundation Ireland founded research organization
- One of Europe's largest data analytics research organizations
- Four centres: Insight@UCD, Insight@DCU, Insight@NUI Galway and Insight@UCC
- Outward facing research with strong industry links!

Two data sets are considered:

Illustrative set:

- Third party motor insurance claims data in Sweden in 1977 from Faraway (2016)
- 1797 observations
- 4 factors: Kilometers, Zone, Bonus, Make

Real industry set:

- Insurance claims history data from an Irish motor insurer from January 2013 to June 2014
- Accidental damage (within comprehensive cover) is analyzed only.

(A priori) Ratemaking model

Let N be the number of claims, Y be the claim size per claim, X be the observations.

Expected claim size = Pure premium = E(N|X) * E(Y|N > 0, X)

Motivating issues (from the Sweden data):

• Model 1:

$$\log(Claims) = \beta_0 + \beta_1 Make + \beta_2 Bonus + \beta_3 Zone + \beta_4 Kilometers$$

• Model 2:

$$log(Claims) = \beta_0 + \beta_1 Make + \beta_2 Bonus + \beta_3 Zone$$

Could we combine the two models?

Motivating issues (from the Sweden data)

Could we combine (some of) these categories?

Three motivating questions:

2

3

• Should a categorical predictor be included in modelling?

• When included, should certain levels be merged together?

• When included and with certain levels merged, how much confidence should be placed on this clustering of levels and this model?

What can we do about it using current methods?

Collapse categories

- CART: classification and regression tree
- Pairwise multiple comparison with general linear hypothesis in GLM (Hothorn et al, 2008)
- Regularization methods such as lasso, OSCAR (Gertheiss & Tutz, 2010)
- Model-based clustering with Bayesian MCMC framework (Malsiner-Walli et al, 2017)
- Method in "BMA" package in R (Raftery et al., 2015)

Keep all categories

- Generalized linear mixed models
- Combining GLM and credibility theory (Ohlsson & Johansson, 2008)

Method outline:

- Factor collapsing (FC) assesses which categories differ from one another with respect to the response
- There is uncertainty about the optimal combination
- Bayesian model averaging (BMA) takes such uncertainty into consideration

Bayesian model averaging (BMA)

Use BMA to average the best models (where possible) (Hoeting et al. 1999) Model weights can be calculated directly using BIC:

 $BIC = -2 * \hat{l} + \ln n * k$

$$\Pr(M_k|D) \approx \frac{\exp(-0.5 BIC_k) \Pr(M_k)}{\sum_{r=1}^{K} \exp(-0.5 BIC_r) \Pr(M_k)}$$

 $Pr(M_k)$ is the prior for each model Average over model predictions

Factor collapsing (FC)

Set partitions:

grouping elements in a set into non-empty subsets such that every element is included in one and only one subset

Partitioning a 3-element set:

Bell number increases super exponentially!

Insight Centre for Data Analytics

Stochastic search

Number of set partitions increases super exponentially

- Computationally very intensive
- Model selection problem becomes an optimization problem!
- Stochastic search over combinatorial states
- Many stochastic optimization methods work for this bumpy objective function:
 - Simulated annealing
 - Genetic algorithm
 - ...

Insight Centre for Data Analytics

FC-BMA illustration

Comparing FC-BMA with stepwise selection using BIC or AIC

Forward and backward selection

FC-BMA

Optimal model region

Predictor "vehicle make" in the frequency model: model summary

	Coefficient	p-value
	:	
🖚 Make 4	-0.641	<0.05 (***)
🚗 Make 6	-0.331	<0.05 (***)
Make 3	-0.226	<0.05 (***)
🚗 Make 9	-0.070	<0.05 (***)
Make 7	-0.045	0.06 (.)
Hake 8	-0.008	0.80
Aake 1	0	
Make 2	0.086	<0.05 (***)
🖚 Make 5	0.162	<0.05 (***)
	÷	
	:	

Predictor "Make" in the frequency model: results of multiple comparison using R package "multcomp" (Hothorn et al., 2016)

Hypothesis	Adjusted p-value
7 - 9 == 0 : coefficients of levels 7 and 9 equivalent	0.9583
8 - 9 == 0 : coefficients of levels 8 and 9 equivalent	0.4909
7 - 1 == 0 : coefficients of levels 7 and 1 equivalent	0.5600
8 - 1 == 0 : coefficients of levels 8 and 1 equivalent	1.0000
5 - 2 == 0 : coefficients of levels 5 and 2 equivalent	0.0839
8 - 2 == 0 : coefficients of levels 8 and 2 equivalent	0.1429
8 - 7 == 0 : coefficients of levels 8 and 7 equivalent	0.9837

Predictor "Make" in the frequency model: results of multiple comparison using R package "multcomp" (Hothorn et al., 2016)

Results for collapsing "Make" factor only in the <u>frequency model</u>. Here only the best 5 models (based on their BIC values) are shown.

Partitions	BIC	BMA weights
(1,8)(<mark>2</mark>)(3)(4)(5)(6)(7,9)	10,301.11	0.3458
(1,8)(<mark>2,5</mark>)(3)(4)(6)(7,9)	10,301.81	0.2426
(1,7,8)(<mark>2</mark>)(3)(4)(<mark>5</mark>)(6)(9)	10,303.44	0.1076
(1,7,8)(<mark>2,5</mark>)(3)(4)(6)(9)	10,304.15	0.0754
(1)(2)(3)(4)(5)(6)(7,8,9)	10,304.92	0.0514

Results for collapsing "Kilometers" factor only in the <u>severity model</u>. Here only the best 5 models (based on their BIC values) are shown.

Partitions	BIC	BMA weights
(1)(23)(45)	1,878,161	0.8124
(1)(2)(3)(45)	1,878,164	0.1430
(1)(23)(4)(5)	1,878,167	0.0379
(1)(2)(3)(4)(5)	1,878,170	0.0067
(1)(25)(3)(4)	1,878,198	0.0000

Irish GI insurer data: counties

Coefficients of Irish counties from the standard GLM over an Irish map:

Frequency

Severity

Irish counties clustering

(Subset of) frequency model coefficients for the standard GLM and results of FC-BMA. Categories are of increasing order based on standard GLM coefficients.

Only four models are selected for illustration.

	Std. GLM	ВМА	Model 1	Model 2	Model 3	Model 4
BIC			62,807.29	62,807.30	62,807.40	62,807.41
Model weights			0.0233	0.0232	0.0221	0.0220
Waterford City	-6.66	-6.64	-6.64	-6.64	-6.63	-6.63
Unknown	-6.61	-6.64	-	-	-	-
Waterford County	-6.61	-6.64	-	-	-	-
Donegal County	-6.60	-6.64	-	-	-	-
Offaly County	-6.58	-6.62	-6.57	-	-	-
Monaghan County	-6.57	-6.61	-	-6.57	-	-
Kildare County	-6.56	-6.57	-	-	-6.57	-6.57
Wicklow County	-6.54	-6.57	-	-	-	-
Wexford County	-6.52	-6.57	-	-	-	-
South Tipperary	-6.51	-6.53	-6.50	-6.50	-6.50	-
Cavan County	-6.48	-6.50	-	-	-	-6.50
Clare County	-6.48	-6.50	-	-	-	-

Irish counties clustering

Coefficients of Irish counties from the standard GLM to coefficients after clustering:

Frequency: before clustering

Frequency: after clustering

Irish counties clustering

Coefficients of Irish counties from the standard GLM to coefficients after clustering:

Severity: before clustering

Severity: after clustering

FC-BMA results of Sweden data set

Prediction comparison (80% training data, 20% testing data) using Gini index and root mean squared error (RMSE).

		Gini index	RMSE
	No-FC	0.8266	16.3
Frequency	FC-only	0.8267	15.0
	FC-BMA	0.8267	21.4
	No-FC	0.0567	3840.4
Severity	FC-only	0.0576	3829.4
	FC-BMA	0.0576	3829.7

FC-BMA results of Irish insurer data set

Prediction comparison (80% training data, 20% testing data) using Gini index and root mean squared error (RMSE).

		Gini index	RMSE
	No-FC	0.7000	0.143
Frequency	FC-only	0.7016	0.140
	FC-BMA	0.7019	0.138
	No-FC	0.5565	4017.6
Severity	FC-only	0.5745	2108.5
	FC-BMA	0.5747	2108.0

Summary

- FC-BMA deals with model selection and uncertainty and categorical level selection simultaneously.
- It helps improve model parsimony, interpretability and predictive quality.
- Compared with other existing methods in the literature, it does not require determination of extra parameters.
- Contrasts with the commonly used CART from machine learning.
- It can be a challenge to obtain the optimum through stochastic optimization and possibly could take a while to converge to the optimum solution.

What's next? – ongoing work

Claims from multiple risk categories can be correlated, even though in many cases different categories are modelled and predicted independently

- Within one product line (e.g. accidental damage and property damage)
- Across product lines (e.g. motor insurance and home insurance)

Observed data					Assuming independence, expected data			ata			
			PD						PD		1
		0	1	2	3			0	1	2	3
	0	391552	2184	24	0		0	389537	4170	53	1
AD	1	6428	2031	19	1	AD	1	8388	90	1	0
	2	95	45	11	0		2	149	2	0	0
	3	6	1	0	0		3	7	0	0	0

What's next? – ongoing work

Claims from multiple risk categories can be correlated, even though in many cases different categories are modelled and predicted independently

- Within one product line (e.g. accidental damage and property damage)
- Across product lines (e.g. motor insurance and home insurance)

Multivariate Poisson and Gamma regression to the rescue!

Observed - Expected									
	PD								
0 1 2 3									
	0	2015	-1986	-29	-1				
AD	1	-1960	1941	18	1				
	2	-54	43	11	0				
	3	-1	1	0	0				

References:

Faraway, J. (2016). faraway: Function and datasets for books by Julian Faraway. R package version 1.0.7.
Gertheiss, J. and Tutz, G. (2010). Sparse modelling of categorical explanatory variables. pages 2150-2180.
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian Model Averaging: A Tutorial. Statistical Science, 14(4):382-417.
Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3):346-363.
Hothorn, T., Bretz, F., Westfall, P., Heiberger, R. M., Schuetzenmeister, A., Scheibe, S., and Hothorn, M. T. (2016). Package `multcomp'. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria.
Hu, S., O'Hagan, A. and Murphy, T.B. (2018). Motor Insurance Claim Modeling with Factor Collapsing and Bayesian Model Averaging. *Stat*, 7(1).
Malsiner-Walli, G., Pauger, D., and Wagner, H. (2017). Effect fusion using model-based clustering. ArXiv e-prints.
Ohlsson, E. (2008). Combining generalized linear models and credibility models in practice. Scandinavian Actuarial Journal, 2008(4):301-314.
Raftery, A., Hoeting, J., Volinsky, C., Painter, I., and Yeung, K. Y. (2015). BMA: Bayesian Model Averaging. R package version 3.18.6.

Questions? Comments? Thank you for listening.

Empowering Citizens. Smarter Societies.

Thank You

SAI pricing seminar

Mr Sen Hu, Dr Adrian O'Hagan, Prof T. Brendan Murphy

Break Out Session

Commercial Lines Pricing Techniques

Eoin O'Baoighill

Current Hot Topics Personal Lines Pricing

Jennifer Quigley Willis Towers Watson III'I'III

Society of Actuaries in Ireland

Commercial Lines Pricing Techniques

Eoin Ó Baoighill 21 March 2018

Disclaimer

The views expressed in this presentation are those of the presenter(s) and not necessarily

of the Society of Actuaries in Ireland

Differences from Personal Lines

- Smaller volumes of data
- Historic data collection
- Heterogeneous risks
- Complex covers
- Underwriter judgment
- Prone to large losses

Commercial Personal

Underwriter vs Actuary

- Never have enough data to model everything
- Expert judgement required for all models
- Actuaries bring different dimension to the pricing
- Policy wording often not understood
- Actuarial resources are scarce

- Fleet
- SME Package Insurance
- Employers Liability and Public Liability
- Property

Fleet

SME Multi Peril

Additive Structure

Liability

Employers' Liability, Public Liability, Products Liability

Liability

- Exposure measured by turnover (PL) or wageroll (EL)
- GLMs possible lack of data in Ireland
- Credibility approach used for larger risks
- Monte Carlo Simulation for high excesses and aggregate deductible policies

Commercial Property

What can actuaries do?

- Pool data
- Rate change monitoring
- Long term portfolio view
- Weather modelling
- Trade isn't best measure of risk work with underwriters to find better measures

New Technologies - Innovation Units

2					
Global Innovation Center	BlueCross. BlueShield.	helvetia	Groupama Groupama Lab	Munich RE 葦	SOMPO Sompo Digital Lab
Milstate.	b g l	ERGO	iag Firemark Labs	MS Amlin Edge	STATE AUTO
Allianz (1) Asia Lab	CENTRAL INSURANCE COMPANIES Fulfilling the Promise Since 1876		[intact] =	Nationwide	Tryg
Anthem.		FAIRFAX FINANCIAL HOLDINGS LIMITED FAIR Ventures,	LOF7	NN SPARKLAB Powered by NN Near-Ilfe	USAA Labs
AVIVA Digital Garage		FARMERS		PROGRESSIVE BIG	
Kamet Data Innovation Lab AXA Digital Agency	Desjardins	GORE MUTUAL		QBE Digital Innovation Lab	XL CATLIN Accelerate
	Hanover Insurance Group®	GREENLIGHT RE Greenlight Re Innovation	lumenlab	SCOR P&C Ventures	
Source: Coverager					

New Technologies - Data

New Technologies – Expenses And Automation

Summary

- Strong rating platform
- External data feeds
- Regular/Easy updates
- Learn from underwriters
- Incorporate underwriter feedback

Questions?

Institute and Faculty of Actuaries

PRICES, PRODUCTS AND PROFESSIONALISM – BRINGITON!

SAI Pricing Seminar Wednesday – 21st March, 2018

- Aidan Redmond
- Grainne Murray
- Jenny Johnston
- Mark McCormick
- Shane Walsh

with Neil Hilary as facilitator

Youcannotlose - A product in four movements

What should the professional actuary do?

BRINGITON FINANCIAL SERVICES INSURANCE GROUP

- Grainne (actuary) on GI side, works in pricing and products
- Mark (non-actuary), chief underwriter and Grainne's boss
- Shane prod. development actuary at Life Line, sister company
- Jenny (non-actuary), head of marketing and Shane's boss

NEVERSAYNO REINSURANCE

• Aidan, pricing actuary

1. New product for Grainne

• What should she do? Please discuss

1. New product for Grainne

- Professionally, this work is outside her competence.
- What knowledge on the new product has been published?
- External consultant or reinsurer can help.
- Obtain product details from competitors.
- Old colleagues, dining clubs (but beware confidentiality).
- Audit trail behind on what she did, and why she did it.
- Ombudsman reports for any regular problems with the product.
- Independent helplines (Prof Support Service)
- TASs, Actuaries' Code, (ASP)
- Pressures from non-actuarial bosses.

2. "I want it and I want it now"

 What additional issues arise from the boss' command that numbers are on his desk by lunchtime? Please discuss

2. Lunchtime demand

- Documentation
- Thorough professional job
- External input
- Checking and peer review
- Other workload and priorities
- Pressures from non-actuarial bosses
- What if your boss is an actuary? Does that make a difference?
- Communication: "sighting act" first, more work later
- Guesswork => refuse?

BRINGITON FINANCIAL SERVICES INSURANCE GROUP

- Grainne (actuary) on GI side, works in pricing and products
- Mark (non-actuary), chief underwriter and Grainne's boss
- Shane prod. development actuary at Life Line, sister company
- Jenny (non-actuary), head of marketing and Shane's boss

NEVERSAYNO REINSURANCE

• Aidan, pricing actuary

Sinchegy

Prices, products and professionalism

3. Colleague's error

- What should Grainne do? Please discuss
- Options:
 - Shane?
 - Your boss (Mark) this might get political
 - Compliance
 - IFoA/SAI PSS?
 - IFoA/SAI discipline?

BRINGITON FINANCIAL SERVICES INSURANCE GROUP

- Grainne (actuary) on GI side, works in pricing and products
- Mark (non-actuary), chief underwriter and Grainne's boss
- Shane prod. development actuary at Life Line, sister company
- Jenny (non-actuary), head of marketing and Shane's boss

NEVERSAYNO REINSURANCE (GI)

• Aidan (pricing actuary), long-term contact of Grainne

Sinchegy

Prices, products and professionalism

4. Error by outside actuary (in your favour)

• What should Grainne do?

Twitter Insurance

Prices, products and professionalism 4. Error by outside actuary (in your favour)

- It's a commercial decision Grainne should fill his boots?
- Grainne must ask him if he is happy with his figures first?
- Commercial reasons for her low quote?
- Grainne should report her to IFoA/SAI immediately?
- Go to IFoA/SAI but **not until** reinsurance treaty signed?
- Will reinsurer meet all claims? Review at renewal?
- Are reinsurer's judgement and practices now in question?
- Whistle-blowing?

Twitter Insurance

Prices, products and professionalism Reinsurance price confirmed – who gets the profit?

- GI's arbitrage it stays in the GI company
- It is Life Line's product profit must be returned here
 - Improve its tight margins
- Further Life Line should cut premiums to customers
 - Treating customers fairly
 - Competitors will do this in time anyway
- The profit has been generated by Neversayno (GI reinsurer).
 - They control its emergence and will ultimately claw it back

BRINGITON FINANCIAL SERVICES INSURANCE GROUP

- Grainne (actuary) on GI side, works in pricing and products
- Mark (non-actuary), chief underwriter and Grainne's boss
- Shane prod. development actuary at Life Line, sister company
- Jenny (non-actuary), head of marketing and Shane's boss

NEVERSAYNO REINSURANCE (GI)

• Aidan (pricing actuary), long-term contact of Grainne

Institute and Faculty of Actuaries

Society of Actuaries in Ireland

PRICES, PRODUCTS AND PROFESSIONALISM – BRINGITON!

SAI Pricing Seminar Wednesday – 21st March, 2018

- Aidan Redmond
- Grainne Murray
- Jenny Johnston
- Mark McCormick
- Shane Walsh

with Neil Hilary as facilitator

Society of Actuaries in Ireland

Professionalism " ambiguous illusions "

Wednesday – 21st March, 2018

Cecilia Cheuk

Young Lady

The Boring Figure

Perception from existing information

Influence from other viewpoint

Can you see the old woman now?

Different view point – Young Lady / Old Woman

Important to recognise

- Other people may have very different view based on the same facts, but can be equally valid.
- Prior viewpoint or experience are important, but may also cloud our judgement and confine the possible results that we produce.
- The influence of others can have a strong impact on how we approach things and may affect the outcome of our work leading to very different results or conclusion.

Illusion still exist in colour

Earliest Known Form

- 18th May: Annual Convention
- 24th May: ERM Practice
- 15th June: General Insurance Practice

Professionalism CPD Events

Special Presentation

Neil Hilary

Institute and Faculty of Actuaries

- Developed Contents for Professionalism Training for new qualifiers.
- Obtained full accreditation with IFoA on SAI courses.
- Provided support to deliver professionalism training for experienced actuaries.
- Business Awareness Module courses in Dublin.
- Train the Trainer event for SAI members.
- Presented courses and presentations to SAI members.

IFOA Education Actuary

Agenda – Non-Life Pricing Seminar 2018

Time	Title	Speakers
8:30 - 8:35	Welcome	Cecilia Cheuk
8:35 - 9:20	Machine Learning	Duncan Anderson
9:20 - 10:05	Advanced Modelling Techniques for General Insurance Claims Data	Adrian O'Hagan/Sen Hu
10:05 – 10:25	Coffee Break	
10:30 - 11:15	Parallel Sessions	
	A. Commercial Lines Pricing Techniques	Eoin O'Baoighill
	B. Current hot-topics in Personal Lines Pricing	Jenny Quigley
11:20 – 12:50	Professionalism	
	"YouCanNotLose" (Volunteers: Aidan Redmond, Grainne Murray, Jenny Johnston, Mark McCormick, Shane Walsh)	Neil Hilary
	"ambiguous illusion"	Cecilia Cheuk
12:50 - 13:00	Closing	Cecilia Cheuk

Disclaimer:

The material, content and views in the following presentation are those of the presenter(s).

Thank You

email: info@actuaries.ie